

Water Globe

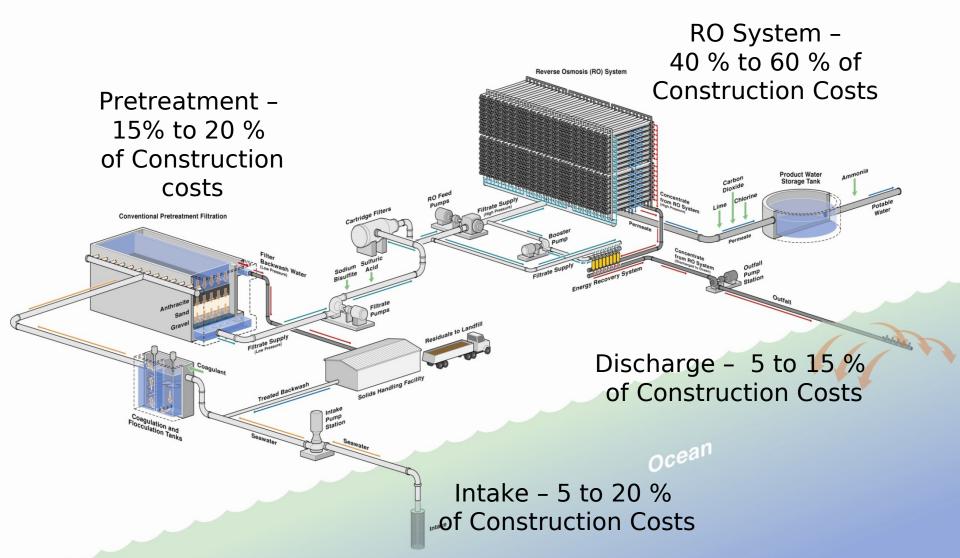
Day 1: Plant Cost Fundamentals

June 25, 2013

9:00-10:30

1.1 Project Cost Estimating - Overview

Nikolay Voutchkov, PE, BCEE


Project Cost Estimating Overview - Outline

- Project Cost Definitions;
- General Methodology for Preparation of Project Cost Estimates;
- ▲ Type and Accuracy of Project Cost Estimates;
- Cost Models.

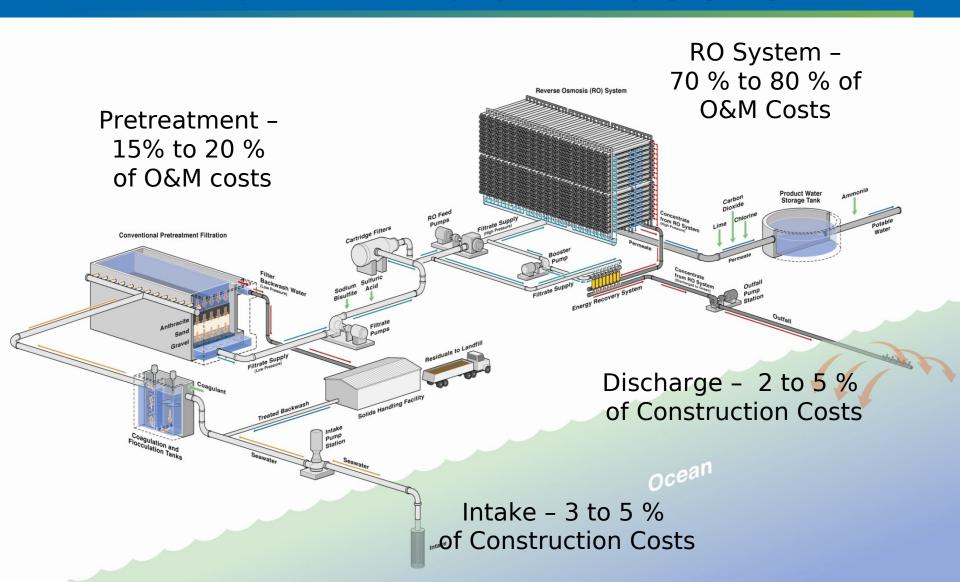
Desalination Cost Components

- Capital Costs:
 - Construction (Direct or "Hard") Capital Costs;
 - Indirect ("Soft") Capital Costs.
- Operation & Maintenance Costs:
 - Variable;
 - Fixed.
- Cost of Water:
 - Annualized Capital Costs;
 - O&M Costs.
 - Variable + Fixed

Seawater Desalination Plant - Construction (Direct) Capital Costs

Seawater Desalination Plant - Soft (Indirect) Capital Costs

- Project Engineering
- Project Development & Environmental Review
- Project Financing
- Contingency


SWRO Desalination Plant Cost Breakdown

Indirect Capital Costs 10 to 20 %

Direct Capital Costs 30 to 40 % Power 20 to 35%

Other O&M Costs 15 to 30 %

Seawater Desalination Plant - O&M Costs

Typical Cost of Water (in US\$2013)

and Energy Ranges (Medium & Large SWRO Plants)					
Classification	Cost of Water	SWRO System Energy Use			
	Droduction	(k\\/h/m3\			

(KVVN/M°) (US\$/m³)

0.5 - 0.8

1.0- 1.5

2.0 - 4.0

2.5 - 2.8

3.0 - 3.5

4.0 - 4.5

3.1

Low-End Bracket

Medium Range

High-End Bracket

Average

Cost Comparison of Alternative Desalination Technologies

1 2311110109100							
Energy and Wa	er Productio	n Costs for A	lternative De	salination Te	chnologies		
Process/Energy Type	MED	MSF	vc	BWRO	SWRO		
Steam Pressure, ata	0.2 – 0.4	2.5-3.5	Not Needed	Not Needed	Not Needed		
Electric Energy Equivalent, kWh/m³ (kWh/1,000 gal)	4.5 – 6.0 (17.0-22.7)	9.5-11.0 (35.9-41.6)	NA	NA	NA		
Electricity Consumption, kWh/m³ (kWh/1,000 gal)	1.2-1.8	3.2-4.0 (12.1-15.1)	8.0 – 12.0 (30.3-45.4)	0.3 – 2.8	2.5 – 4.0 (9.5-15.1)		
Total Energy Use, kWh/m³ (kWh/1,000 gal)	5.7-7.8 (21.5-29.5)	12.7-15.0 (48.0-56.7)	8.0 – 12.0 (30.3-45.4)	0.3 – 2.8	2.5 – 4.0 (9.5-15.1)		
Water Production Costs, US\$/m ³	0.7 – 3.5	0.9 – 4.0	1.0 – 3.5	0.2 – 1.8	0.5 – 3.0		

(2.6-13.2) (3.4-15.1) (3.8-13.2) (0.8-6.8) (1.9-11.3)

Note: NA - Not applicable.

(US\$/1,000 gal)

General Methodology for Preparing Cost Estimate

- . Determine Project Size, Availability and Location/Site;
- . Establish Source and Product Water Quality;
- . Identify the Location of:
 - Intake;
 - Discharge;
 - Point of Delivery to the Water Supply System;
 - Source of Power Supply.
- . Complete Initial Environmental Review;
- Use Cost Curves, Models or Detailed Cost
 Calculations to Determine Capital and O&M Costs;
- 6. Identify the Source and Conditions of Project Funding;
- 7. Calculate Cost of Water Production.

Type and Accuracy of Cost Estimates

- Conceptual Cost Estimate
 - Developed During Initial Planning/Phasing;
 - Accuracy 50 % to + 100 %.
- Preliminary Cost Estimate
 - Developed when Project Scope is Well Defined;
 - Accuracy 30 % to + 50 %.
- Budgetary Cost Estimate
 - Used to Determine Project Budget and Procure Services;
 - Accuracy 15 % to + 30 %.
- Preliminary Cost Estimate
 - Developed based on Detailed Project Design.
 - Accuracy 5 % to + 10 %.

Type and Accuracy of Cost Estimates

Estimate Type Conceptual (Incremental	Cost Basis Initial Project Scope and Conceptual Design;	Purpose Conceptual Planning; Fatal-flaw analysis;	Expected Accuracy (Percent of Actual Costs) - 50 to +100 %
Budgeting)	 Costs of Similar Projects; Scale Factors; Cost – Plant Capacity Curves and Tables. 	Project Scope Definition.	
Preliminary	 Preliminary Project Design; Cost Models; Cost Graphs, Formulas and Tables for Individual Treatment Processes and Equipment. 	 Process, Technology and Equipment Selection; General Evaluations; Guidance for Future Investigations. 	- 30 to +50 %

Type and Accuracy of Cost Estimates (continued)

Budgetary	 Advanced Project Development and Design; Budgetary Vendor Quotes for Key Equipment, Piping and Facilities; Cost Estimates Based on Sizing and Quantification of Construction Materials and Labor. 	 Facility Owner Budget; Project Authorization. 	- 15 to +30 %
Detailed (Zero-Based Budgeting)	 Detailed Project Design; Equipment and Material Specifications and Quantification; Firm Vendor Quotes/Purchase Orders; Guaranteed Subcontractor Prices for Various Activities. 	 Preparation of Project Tender (Bid) Price; Control of Project Implementation. 	- 5 to +10 %

Conceptual Cost Estimate

Purpose – to Determine an Order-of-Magnitude values of capital, O&M and water production costs.

Typically Used for:

- Preliminary Screening of Water Supply Alternatives;
- General Cost-of-water Comparisons with Other Sources of water supply;
- Preliminary Site Screening;
- Fatal Flow Analysis.

Estimate Usually Based on:

- Cost-capacity curves;
- Scale-up or down empirical factors and exiting project costs;
- Source and product water quality, location and size.

Preliminary Cost Estimate

- Purpose higher-accuracy estimate developed for specific site and conditions.
- Typically Used for:
 - Site-specific project cost assessment;
 - Evaluation of alternative treatment processes & equipment.

Preliminary Cost Estimate - Information Needed for Development

- Average Annual, Daily Average, Minimum and Maximum SWRO Plant Production Capacities;
- Design Plant Capacity Availability Factor;
- Source Water Quality Specification;
- Product Water Quality Specification;
- Plant Intake and Discharge Type, Size and Configuration;
- Selection and Size of Key Facilities, Equipment and Piping for:
 - Source Water Pretreatment;
 - SWRO Desalination and Energy Recovery;
 - Product Water Post-Treatment;
 - Concentrate Disposal;
 - Solids and Liquid Waste Handling.
- Process Flow Diagram;
- Preliminary Facility Layout;
- RO System Performance Projections;
- Solids Mass Balance.

Budgetary Cost Estimate

- Purpose for inclusion in owner's fiscal planning and budgeting process.
- Typically Used for:
 - Project Funding;
 - Project Comparison;
 - Refinement of Project Design/Value Engineering.

Budgetary Cost Estimate -Information Needed for Development

- Preliminary Geotechnical and Hydro-geological Investigations;
- Preliminary Design of:
 - Key Project Structures and Foundations;
 - Electrical Supply System;
 - Instrumentation and Control System;
 - Architectural Facades and Appearance of Key Buildings;
- Plant Hydraulic Profile;
- Basic Specifications of Key Equipment and Piping, Equipment Data Sheets and Budgetary Quotes from Vendors;
- Project Implementation Plan and Schedule.

Detailed Cost Estimate

- Purpose to determine construction contract price.

 Costs based on actual design, equipment vendor firm prices, and quantity of materials, labor and other consumables.
 - Typically Used for:
 - Contractor procurement;
 - Determination of most probable construction, O&M and water costs;
 - Tracking of project construction progress and expenditures.

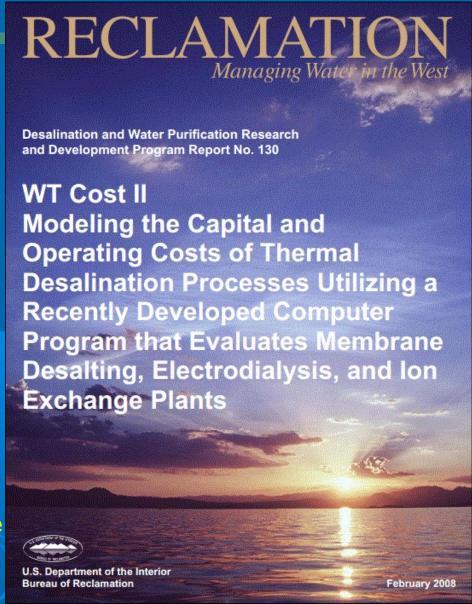
Detailed Cost Estimate - Information Needed for Development

- Advanced Level of Project Design (30 to 50 % of design completion);
- Detailed Construction Survey;
- Detailed Geotechnical Investigation and Soil Analysis;
- Comprehensive Project Implementation Schedule;
- Detailed Quantification and Cost Estimates of Key Construction Activities;
- Binding Vendor Price Quotes for All Equipment and Prefabricated Facilities of Unit Value In Excess of US\$10,000 including:
 - Source Water Intake, Screening and Pretreatment Equipment;
 - RO and Pretreatment Membranes and Cartridge Filters;
 - Large Pumps;
 - Energy Recovery Equipment;

Project Cost Models

- Most Popular Models:
 - WTII Cost USBR 2008 (latest)

http://


www.usbr.gov/research/AWT/reportpdfs/report130.pdf

 International Atomic Energy Agency (IAEA)
 Desalination Economic Evaluation Program (DEEP – version 4)

http://www.iaea.org/NuclearPower/Desalination/index.html

WTCost II Program - USEPA (latest version - 2008)

- ☐ Allows Comparison of:
- Thermal and RO Desalination
- Membrane and conventional granular media filtration
- ☐ Incorporates:
- Ion Exchange
- ED/EDR
- MSF, MED, TVC
- Hybrid (Thermal & RO) Desal Systems
- Other Processes
- □ Reflects Use of Pretreatment Chemicals
- Equipment Supplier and Energy Source Neutral

WTCost II - Inputs

- Product Capacity
- ▲ Overall Recovery Rate
- Percent of Time Online (Availability Factor)
- Water Quality Analysis

WTCost II - Project Description

Project Name: Bureau of Red	Loca Proj	tion:		
Project Description :	Date			
SPECIFY CURRENCY				
	1 \$	X 1	= USD	
CAPACITY SPECIFICATIONS				
Desired Product Water Flow Rate	50 <u>→</u>			
Plant Availability 95 [0,100]	6			
Planned Operation 24 Hrs/Day				
PLANT STAFFING				
Enter the average labor rate/hour for each category of staffing. The ENR labor rate has been added for the operations and maintenar	Management	80	Engineering and Laboratory	60
staff. The total yearly cost for labor will be a up and summarized at the end of the project		20	Operators and Maintenance	38.7

WTCost II - Input Water Quality Data

Select a Water Analysis	Metals			Inorgan	ic and Diso	lved Solids	كتماشك
Enter Multiplier 1.0 CALCULAT	Barium Calcium Iron Magnesium	0 0.03 406 0.01 1290 0.002 385	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Alkalinit Bicarbon Alkalinit Carbona CO2 Chloride Fluoride Nitrate (o-Phosp	nate ry- ite (as N)	0.5 2.13 19333 1.3 0.5 0.07	mg/L mg/L mg/L mg/L mg/L mg/L
Water Properties pH 8 Specific Gravity 1.0234 Turbidity 0 NTU Conductivity 53,966 uS/c Temperature 25 deg	ent.	14	mg/L	Silica Total Or Carbon (Total Dis Solids (1	(TOC) ssolved (DS) spended	0 35,005.9	mg/L mg/L
Water Analysis Values Free Energy (dG) = dG' + 1.7 R*T*In(Q) Total Equivalents per Liter (Eq/L) Average Equivalent Mass (g/Eq)	(Eq/L) Average M Mass (g/M			0.127 31.4 0.696	pH for de 0 Cations Eq/L Anions Eq/L	G = 6.73 0.604 0.604	

WT Cost II – Process Selection Form

PROJECT INFORMATION

WATER ANALYSIS

UNIT OPERATIONS

Select Unit Operations

Pretreatment Disinfection

Chlorination

Chloramination

Electro-Chlorination

Ozone

UV

Chemical Feed Systems

Acidification

Alum (Dry Feed)

PAC

Ferrous Sulfate

Ferric Chloride

Lime and Soda Ash

Anti-scalant

Polyelectrolyte

Potassium Permanganate

NaOH

✓ Filtration

Granular Activated Carbon Gravity Filtration Microfiltration/Ultrafiltration

▼ Dechlorination

Sodium Bisulfite Sodium Sulfite

Sulfur Dioxide

□ Desalting

Reverse Osmosis/Nanofiltration

Electrodialysis

Ion Exchange

Thermal Desalination

▼ Post-treatment

Chlorination

Chloramination

Ozone

UV

Chemical Addition

Miscellaneous Equipment

Upflow Solids Contact Clarifier

Intake/Outfall

Clearwell Storage

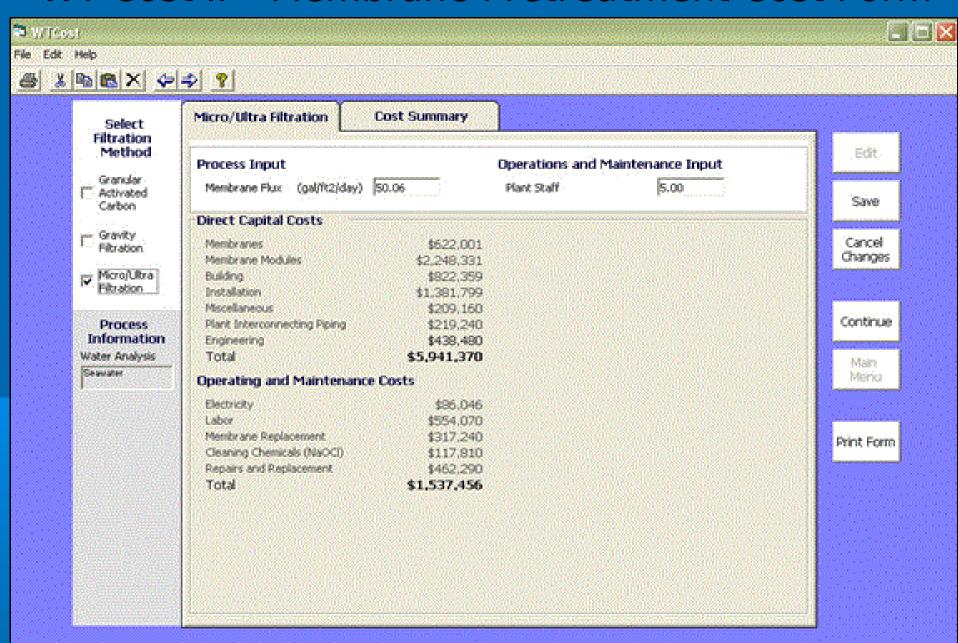
Pumps

Additional Equipment

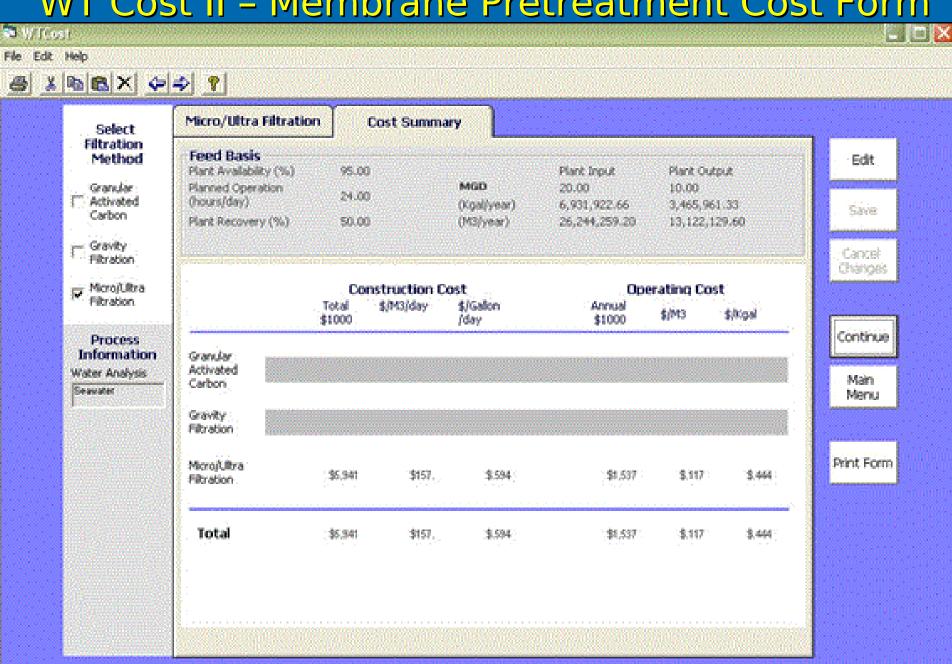
Edit

Save

Cancel Changes


Continue

Main Menu


Print Form

Help

WT Cost II - Membrane Pretreatment Cost Form

WT Cost II - Membrane Pretreatment Cost Form

WTCost II - RO Form

Reverse Osmosis - Pag	e 1 Reverse Osmosis -	Page 2	1
Direct Capital Cost - Const	ruction (\$)	Direct Capital Cost - Misc. (\$)	Edit
Building Cost (\$/sq ft) Administrative Area (sq ft)	100 43 1,300,000	Control Instrumentation and Cntrols 401,000 Degasifiers	Save
Electrical Cost Base \$/kgal(US) Capacity	2,320 580,000	Contractor Engr and Training 60,800	Cancel
Sitework \$/kgal(US)	55 692,000	Process Piping 1,550,000 Yard Piping 575,000	
Backup Generator (MW)	0		HOW HE
		Operating and Maintenance Costs	Continue
		Electricity 3,520,000	Sidenay 2 Done
Review/Calculate	After calculating the pump costs,	RO-NF Operating and 25 1,940,000 Maintenance Staff	taune.
Pumps Costs	you will be returned to page 1 of the RO-NF calculations	Repairs and Replacement 68,800	-
Pumps Direct Capital Cost	\$ 4,050,000	Laboratory Fees 55,800	Print Form
Pumps Operating Cost (excluding electricity)	\$ 451,000	Total Direct \$11,800,000 Capital Cost	Help
		Total Ops. and \$6,560,000 Maint. Cost	

WTCost II - Cost Summary Form

Project Summa	ry		Indirect Costs	Project Cost Summary
Project Bureau of F Description	eclamation		Feed Flow 53.00 Product Flow 20 Process Recovery (%) Plant Availability (%) Planned Operation (h/day)	MGD (U.S.) MGD (U.S.) 42 95 24
Pretreatment Disinfection			De-Chlorination	
Chlorination			Sodium Bisulfite	
			Desalting	
			Reverse Osmosis	
			Thermal Desalination	
Chemical Feed Systems	Dose	Pate		
Acidification[H2SO4]	10	mg/L	Product Water Treatment	
Ferric Chloride	10	mq/L	Chlorination Product Water Chemical Additi	ion
			Minney Continues	
			Miscellaneous Equipment	
Media Filtration			Upflow Solids Contact Clarifier Intake/Outfall Clearwell, Storage and Land Additional Equipment	
Gravity Filtration			Anthonial Equipment	

WTCost II - Cost Summary Form -

Project Summary		Indirect Costs	Project Cost	Summary
Indirect Cost Input		Indirect Capital Cost	Data from Cost Indices Fo	rm:
Interest during Construction (% of Total Constr. Cost)	6	\$ 5,429,000	Plant Amortization (Y)	30
Contingencies (% of Total Constr. Cost)	12	\$ 10,860,000	Interest Rate (%)	6.
Architectural and Engineering costs: Project Management, Fees (% of Total Constr. Cost)	12	\$ 10,860,000	Plant Staffing (Number of Time People)	Full
Working Capital (% of Total Constr Cost)	4	\$ 3,619,000	Management	2.3
Insurance (% of Total Constr. Cost)	0.5	\$ 452,400	Engineering and Laboratory Operators/Maintenance	3.6 43.9
Taxes - VAT/Import Duty (% of Total Constr. Cost)	0.5	\$ 452,400	Supply, Office and Admin.	6.1
Profit (% of Total Constr. Cost)	12	\$ 10,860,000		
Pilot Plant Cost	75000	\$ 75,000		
Total Indirect Cons	truction Cost	\$ 42,600,000		
Land Cost		\$		

WTCost II - Cost Summary Form -

Project	Summary	Ĭ	Indirect Costs		Project Cos	t Summary
	Cons	truction Cost		Operatir	ng Cost	
Process	Total (000)	* /m3/day	* /gal /day (US)	000/yr	* /m3	* /kgal (US)
Pretreatment	186	2	.01	897	.03	.13
Chemical Feed Systems	555	7	.03	613	.02	.09
Media Filtration	16,830	222	.84	925	.04	.13
De-Chlorination	80	1		87		.01
Desalting	52,210	690	2.61	15,360	.59	2.21
Product Water Treatment	482	6	.02	526	.02	.08
Miscellaneous Equipment	20,130	266	1.01	106		.02
Non-Operator Labor				1,044	.04	.15
Indiirect Capital Cost	42,600	563	2.13			
Capital Recovery				9,574	.36	1.38
Feed Water						
TOTAL	133,100	1,758	6,65	29,130	1.11	4.2

International Atomic Energy Association – Desalination Economic Evaluation Programme (DEEP)

Couples An Number of Power and Heat Technologies with Desalination Technologies

Process	Abbreviation	Description
Distillation	MED	Multi-Effect Distillation
	MSF	Multi-Stage Flash
Membrane	SA-RO	Stand-Alone Reverse Osmosis
	C-RO	Contiguous Reverse Osmosis
Hybrid	MED/RO	Multi-Effect Distillation with Reverse Osmosis
	MSF/RO	Multi-Stage Flash with Reverse Osmosis

Input

Performance calculation of energy source Performance calculation of water plant Cost calculation and economic evaluation Output

DEEP Cost Model - Input -1

Economic parameters inpu	ut data	
Discount rate:	8.0	%/a
Interest rate:	8.0	%/a
Currency reference year:	2003	
Initial construction date:	2003	
Initial year of operation:	2005	
Purchased electricity cost:	0.06	\$ / kWh
Backup heat source input data		Value set
Lifetime of backup heat source Optional:	0.00	30 a
Backup heat source unit cost:	0.00	\$ / MW
Fossil fuel price:	20.00	\$ / bbl
Fossil fuel real escalation:	2.00	%/a /

DEEP Cost Model - Input -2

Energy plant cost input	data		\
Plant economic life:	60	a	
Specific construction cost:	1672	\$ / kW	
Additional site related construction cost:	167	\$ / kW	
Construction lead time:	60	m	
→ Specific O&M cost:	9	\$ / MWh	
Factor in % Specific nuclear fuel cost:	11	\$ / MWh	
Specific decommissioning cost:	16.72	\$ / MWh	
Fossil fuel price at startup:	N/A	\$/bbl (\$/t)	
Nuclear fuel annual real escalation:	0.0	%/a	
Fossil fuel annual real escalation:	N/A	%/a	
			1

DEEP Cost Model - Input -3

1	Distillation plant cost input	data		7
•	Plant economic life:	30	a	
	Distillation plant lead time:	12	m	٦
	Optional value (type 0 for Deep default):	0	m	
	Reference unit size for cost:	48,000	m ³ /d	
	Base unit cost:	1200	\$ / m ³	
	Optional in/outfall specific base cost:	0	\$ / m ³	
	Optional intermediate loop cost:	0	\$ / m ³	
	Distillation plant cost contingency factor:	0.100		
	Distillation plant owners cost factor:	0.050		
	Distillation plant lead time:	12	m	
	Average management salary:	66000	\$/a	٦
	Average labor salary:	29700	\$/a	- 1
	Optional no. of management personnel:	0	3	1
	Optional number of labor personnel:	0	26	1
	Specific O&M spare parts cost:	0.04	\$ / m ³	
	Tubing replacement cost:	0.00	\$ / m ³	
	Specific O&M cost for pre-treatment:	0.03	\$ / m ³	
\	Specific O&M cost for post-treatment:	0.02	\$ / m ³	,
	Distillation plant O&M insurance cost:	0.50	% _	_

DEEP Cost Model - Input -4 (RO Data)

/	RO plant cost input d	ata		\
/	Plant economic life:	30	a	.\
/	RO plant lead time:	24	m	
	Optional value (type 0 for Deep default):	m		
	Hybrid plant lead time:	24	m	
	Optional value (type 0 for Deep default):	0	m	
	Base unit cost:	800	\$ / (m ³ /d)	
	Optional in/outfall specific base cost:	0	\$ / (m ³ /d)	
Me	mbrane equipment cost to total cost ratio:	0.10		
	RO plant cost contingency factor:	0.100		
	RO plant owners cost factor:	0.050		
	RO plant lead time:	24	m	
	Average management salary:	66,000	\$/a	
	Average labor salary:	29,700	\$/a	
	Optional no. of management personnel:	0	2	
	Optional number of labor personnel:	0	12	
	O&M membrane replacement cost:	0.05	\$ / m ³	
	O&M spare parts cost:	0.04	\$ / m ³	
\	Specific O&M cost for pre-treatment:	0.03	\$ / m ³	1
/	Specific O&M cost for post-treatment:	0.01	\$ / m ³	/
	RO plant O&M insurance cost:	0.50	%	

DEEP Cost Model - Summary Output

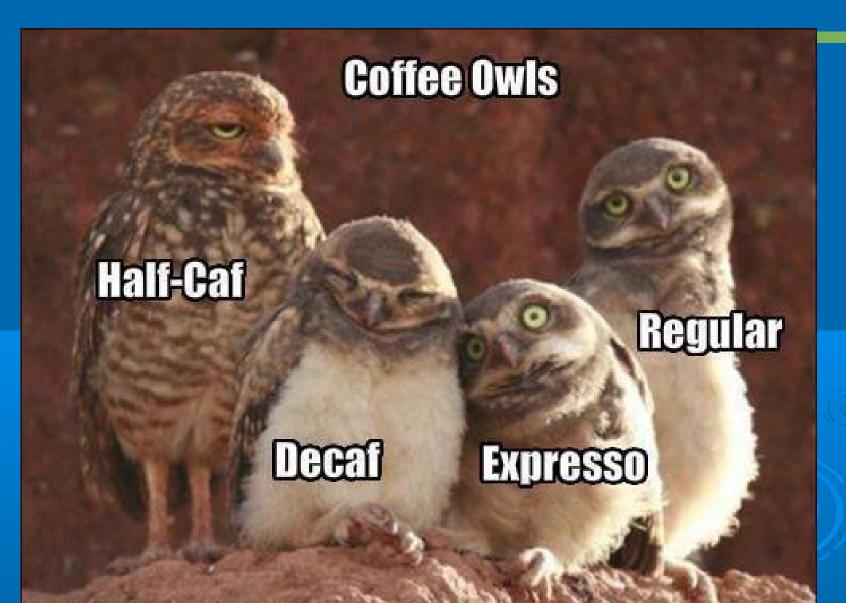
WATER & POWER COST SUMMARY Case identification and site characteristics Total required water plant Energy plant type: PWR Desalination plant type: MSF-RO 350,000 m^2/d capacity at site: Energy source: NUCLEAR Blackup heat source: N Energy product form: H & P m^2/d Intermediate loop (MSF): Y Capacity of distillation part: 140,000 Fuel type: UO2 RO membrane type: SW Capacity of RO part: 210,000 m^2/d Case: Case X Assumed site location: Site Y General input data Seawater TDS: 38,500 pcm Distillation plant design cooling water temperature: Average annual seawater temperature: 21.0 °C Stand-alone RO design cooling water temperature: 21.0 ℃ Initial year of operation: 2005 Purchased electricity cost: 0.060 \$AW(e).h Discount rate: 8.0 % 8.0 % 60 a Interest rate: Plant economic life:

Water and power plant cost summary

Specific construction cost:	1,672 \$7WV	P = 620 MV Power plant total construction cost: P = 620 MV Power plant interest during construction: Total power plant investment:		234 м s
Specific investment cost:	2,156 \$7WV	→ /P →	 Total power plant investment: Levelized electricity cost: 	
DOES THE POWER PLANT	TALREADY EXIST?	NO! CUCKT	O CHANGE	0.037 \$7858
+		200.000 2	G.O.R. :	6.4
Total installed water p		360,000 m ³ /d	Recovery ratio :	0.399
	struction cost:	443.1 ms		
	construction:	35.4 ms	Net saleable power:	588.2 MW
Total im	restment cost:	478.5 ms	Average daily water production:	307,800 m ³ /d
Specific im	restment cost:	1,329.3 \$ / (m³/d)	Water cost:	0.95 \$ /m ³

Key Challenges with Existing Cost Models

- Need for Frequent Update;
- Need to Reflect New Developments of Membrane Technologies and Products;
- Need to Reflect New Energy Recovery Systems.


2013 Cost Curve Models Used in this Course

- Based on Real-world Costs and SWRO Projects Completed in the Last 5 Years;
- Data Used for Cost Curve Development are Normalized (Adjusted) for:
 - Year of Plant Commissioning;
 - Production Capacity;
 - Source and Product Water Quality'
 - Geographic Location ENR Construction Cost Index;
 - Currency;
 - Other Factors (Intake and Outfall Type, etc.).

Questions?

Coffee Break

