

Water Globe Consulting

THE MIDDLE EAST DESALINATION RESEARCH CENTER

Cost Estimating of SWRO Desalination Plants

Day 2: Total Capital Costs and O&M Expenditures

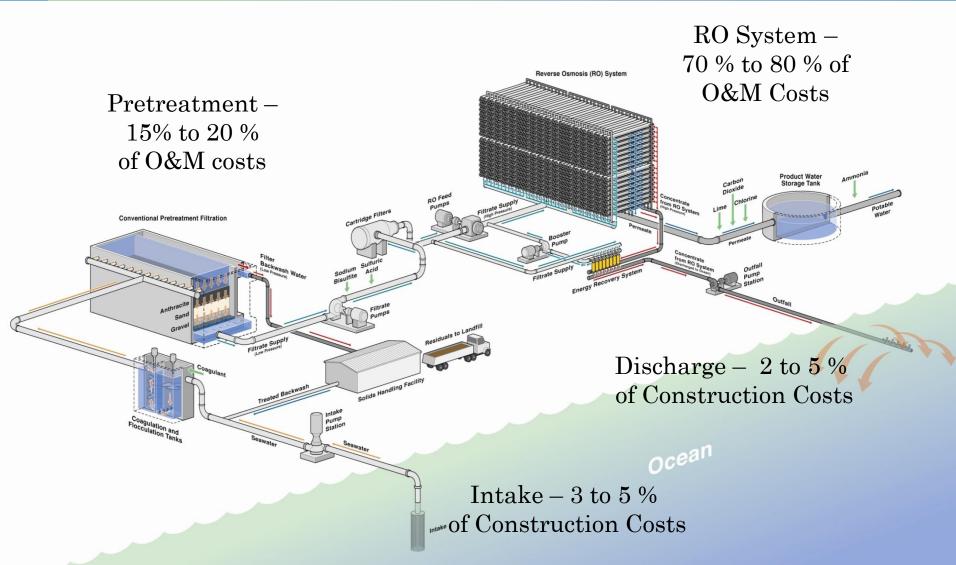
June 26, 2013

10:45-12:00

2.2 Variable O&M Costs

Nikolay Voutchkov, PE, BCEE

Variable O&M Costs - Outline



Chemicals

Replacement of Membranes and Cartridge Filters

> Waste Stream Disposal

Seawater Desalination Plant – O&M Costs

Desalination Cost Components

Capital Costs:

- Construction (Direct or "Hard") Capital Costs;
- Indirect ("Soft") Capital Costs.

> Operation & Maintenance Costs:

- Variable;
- Fixed.

Cost of Water:

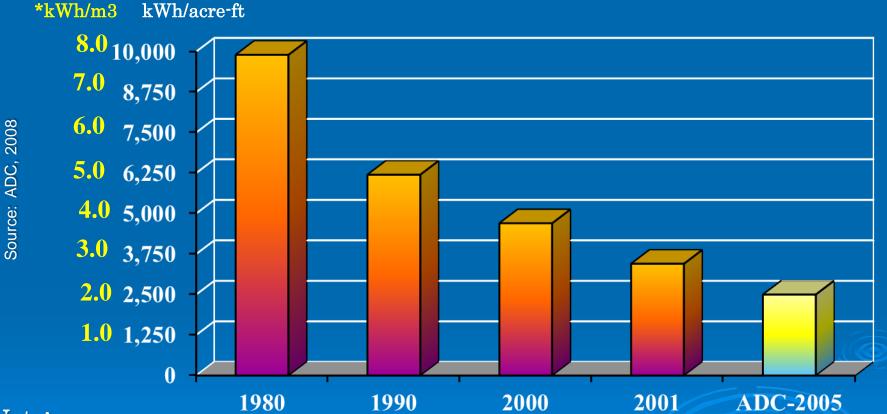
- Annualized Capital Costs;
- O&M Costs.

Total O&M Cost Breakdown

Cost Item	Percentage of To	tal O&M Cost (%)
	Low-Complexity Project	High-Complexit Project
Variable O&M Costs	-	
5. Power	45.0 - 61.0	35.0 – 58.0
6. Chemicals	3.0 - 6.5	5.5 – 9.0
 Replacement of Membranes and Cartridge Filters 	5.0 - 9.0	6.5 – 11.0
8. Waste Stream Disposal	2.5 - 5.5	3.5 – 7.0
Schotal - Variable O&M Costs	55.5 - 82.0	50.5 - 85.0
Fixed O&M Costs	l	
5. Labor	5.0-95	4.0 - 11.0
6. Maintenance	6.5 - 12.5	3.0 – 13.0
7. Environmental and Performance Monitoring	0.5 – 4.0	1.0 – 5.0
8. Indirect O&M Costs	7.5 – 18.5	7.0 – 20.5
Subtotal - Fixed O&M Costs	19.5 - 44.5	15.0 - 49.5
	100 %	100 %

Variable O&M Costs - Power

Annual O&M Cost Breakdown			
Cost Item	Percentage of Total O&M Cost (%)		
	Low-Complexity Project	High-Complexity Project	
Variable Q&M Costs			
5. Power	45.0 - 61.0	35.0 – 58.0	
6. Chemicals	3.0 – 6.5	5.5 – 9.0	
 Replacement of Membranes and Cartridge Filters 	5.0 – 9.0	6.5 – 11.0	
8. Waste Stream Disposal	2.5 – 5.5	3.5 – 7.0	
Subtotal - Variable O&M Costs	55.5 - 82.0	50.5 - 85.0	
Fixed O&M Costs		•	
5. Labor	5.0 – 9.5	4.0 - 11.0	
6. Maintenance	6.5 - 12.5	3.0 – 13.0	
7. Environmental and Performance Monitoring	0.5 – 4.0	1.0 – 5.0	
8. Indirect O&M Costs	7.5 – 18.5	7.0 – 20.5	
Subtotal - Fixed O&M Costs	19.5 - 44.5	15.0 - 49.5	
Total O&M Costs	100 %	100 %	

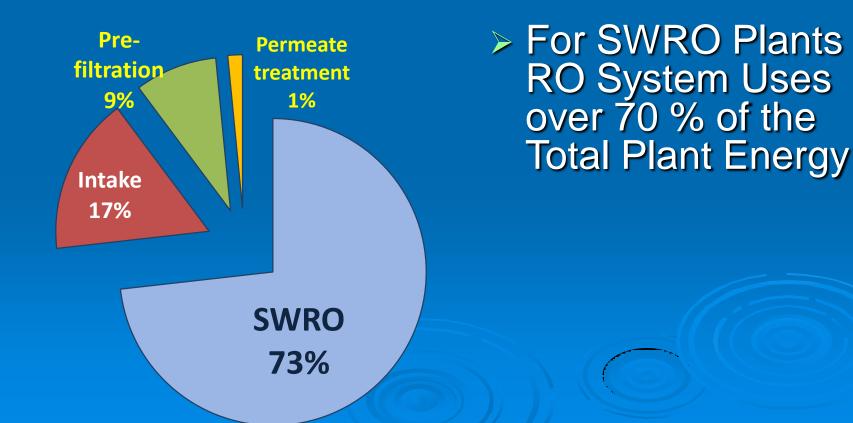

Typical Cost and Energy Ranges Worldwide (Medium & Large SWRO Plants-2013US\$)

Classification	Cost of Water Production (US\$/m ³)	SWRO System Energy Use (kWh/m ³)
Low-End Bracket	0.5 – 0.8	2.5 – 2.8
Medium Range	1.0- 1.5	3.0 – 3.5
High-End Bracket	2.0 - 4.0	4.0 – 4.5
Average	1.1	3.1

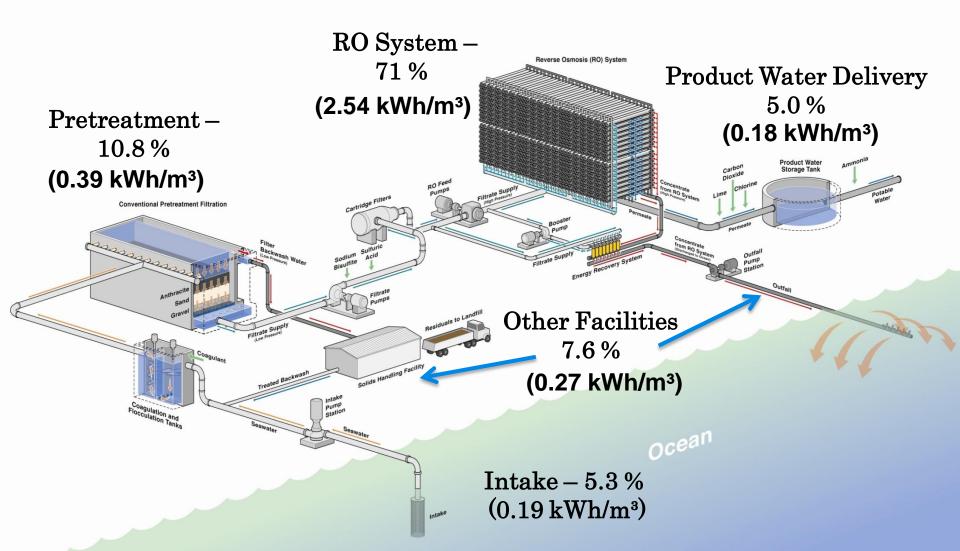
Energy Use and Function of Water Source (Medium & Large SWRO Plants)

Seawater Source	SWRO System Energy Use (kWh/m ³)
Mediterranean	3.6 – 4.0
Gulf of Oman	3.9 – 4.2
Red Sea	4.0 – 4.3
Arabian Gulf	4.2 - 4.5

Seawater Reverse Osmosis System – Energy Use Trend

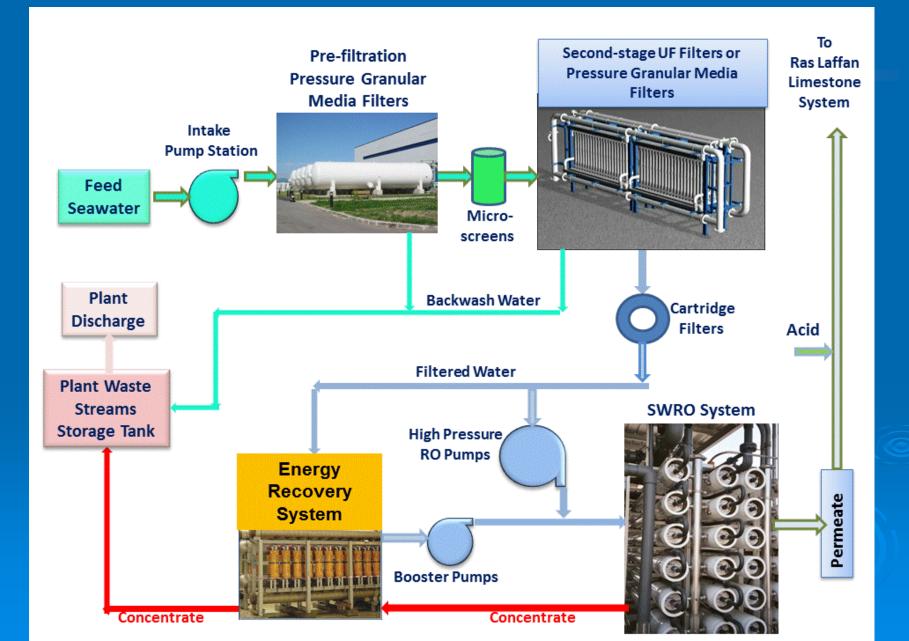


Note:


*Numbers for energy consumption represent the **RO process only**. They do not include any allowance for supply or distribution.

Key Energy Use Components of SWRO Desalination Plants

Reverse osmosis system is the major component of energy consumption


200,000 m³/d SWRO Plant – Key Energy Uses

Example Energy Use of 45,000 m³/d SWRO Plant (TDS =42 ppt & Temp = 28°C)

Unit	Number of	والمراجع والمراجع المراجع والمراجع والمراجع والمراجع المراجع	Unit	ize Average Power Use		1993	Maximun Power Use		
	Duty Units	Standby Units	Motor Size (Hp)		z of Total)			2 of Total	(kVk/m')
Desalination Plant Intake Pump Station		Cally	(rocar (np	a or rotary	(r vsa (up)	a or rotal	(
Seawater Intake Pumps	4	1	525	180	1.73	0.071	2,032	13.02	0.667
Pretreatment Facilities		-22			2.55.5	0.000		01545-29	
Pre-filtration Pressure Filters - Blowers	1	1	100	13	0.12	0.005	25	0.16	0.008
Pre-filtration Filter Backwash Pumps	2	1	250	31	0.30	0.012	63	0.40	0.021
Other Pre-filtration Pretreatment Equipment	4	4	2	8	0.08	0.003	10	0.06	0.003
Micro-screening System - Backwash Pumps	1	9	100	8	0.08	0.003	17	0.11	0.005
UF Filters - Blowers	0	0	0	22	32	5000000			
UF Filters - Backwash Pumps	4	2	150	75	0.72	0.030	150	0.96	0.049
Other UF System Equipment	4	4	5	20	0.19	0.008	40	0.26	0.013
Reverse Osmosis System									
High Pressure RO Feed Pumps	5	81	3100	12,500	57.27	2,353	16,154	49.43	2,534
Energy Recovery System - Power Reduction	5	0	0	(6,531)	1.0011001	2.000	(8,440)		2.004
ERI Booster Pumps	5	5	75	360	3.45	0.142	440	2.82	0.145
Booster Pumps for Second RO Pass	4	1	875		22.11	0.908	3,416	21.89	1.122
Waste Discharge Pump Station									
Discharge Pumps	4	1	250	940	9.02	0.371	1,000	6.41	0.328
Waste Discharge Tank Mixers	4	o	10	40	0.38	0.016	40	0.26	0.013
Membrane Cleaning System/s									
Membrane Cleaning Pumps	2	1	5	10	0.10	0.004	10	0.06	0.003
Flush Pumps	2	1	7.5	15	0.14	0.006	15	0.10	0.005
Mechanical Mixers for Chemical Batch Tank	2	0	0.75	2	0.01	0.001	2	0.01	0.000
Chemical Cleaning System	2	0	10	20	0.19	0.008	20	0.13	0.007
Chemical Feed Equipment									
Coagulant Feed System	2		10	20	0.19	0.008	20	0.13	0.007
Polymer Feed System	1	1	0.5	1	0.00	0.000	1	0.00	0.000
Hydrochloric Acid Feed System	1	1	5	5	0.05	0.002	5	0.03	0.002
Sodium Hypochlorite Feed System	1	1	0.5	1	0.00	0.000	1	0.00	0.000
Sodium Bisulfide Feed System	1		1.5	2	0.01	0.001	2	0.01	0.000
Sodium Hydroxide Feed System	2	2	2	4	0.04	0.002	4	0.03	0.001
Biocide	1	34	0.5	1	0.00	0.000	1	0.00	0.000
Service Facilities									
HVAC	1	0	70	70	0.67	0.028	100	0.64	0.033
Lightning	3	0	100	100	0.96	0.039	200	1.28	0.066
Controls and Automation	1	0	20	20	0.19	0.008	20	0.13	0.007
Service Air Compressors	5	5	1	5	0.05	0.002	10	0.06	0.003
Other Miscellaneous/Contingency	9		200	200.00	1.32	0.079	250.00	1.60	0.082
				10,421			15,604	hp - 1002	
Other Desalination Plant Power Uses				7.77	MY		11.64	WY	
TOTAL DESALINATION PLANT POWER U	\$E			4.11	kW/m*		5.15	\$107m*	

Example Energy Use of 45,000 m³/d SWRO Plant (TDS =42 ppt & Temp = 28°C)

SWRO Plant Size Matters!

Plant Size	SWRO System Energy Use kWh/m ³
1,000 m³/d	4.5 - 6.0
40,000 m³/d	3.0 - 4.0
200,000 m³/d	2.5 - 3.0

Examples of Energy Use of Largest Desalination Projects Worldwide

SWRO Plant	Seawater Salinity (ppt)	Total Plant/RO Power Use (kWh/m³)
Sorek, Israel – 510 ML/d (Largest in the World) – BOOT	40	3.6 / 2.9
Point Lisas, Trinidad – 130 ML/d (Largest in The Americas) - BOOT	38	4.8 / 3.8
Tuas, Singapore – 136 ML/d (Largest in Asia) - BOOT	33	4.3 / 3.3
Al Dur, Bahrain – 220 ML/d (Largest in the Middle East) - BOO	46	4.6 / 3.8
Victorian Plant, Melbourne – 444 ML/d (Largest in Australia) – DBO	36	3.9/3.0
Barcelona, Spain – 200 ML/d (Largest in Europe) – DBO	35	3.7 / 2.6

Methods to Minimize Desalination Plant Energy Use

Desalination Energy Use Factors

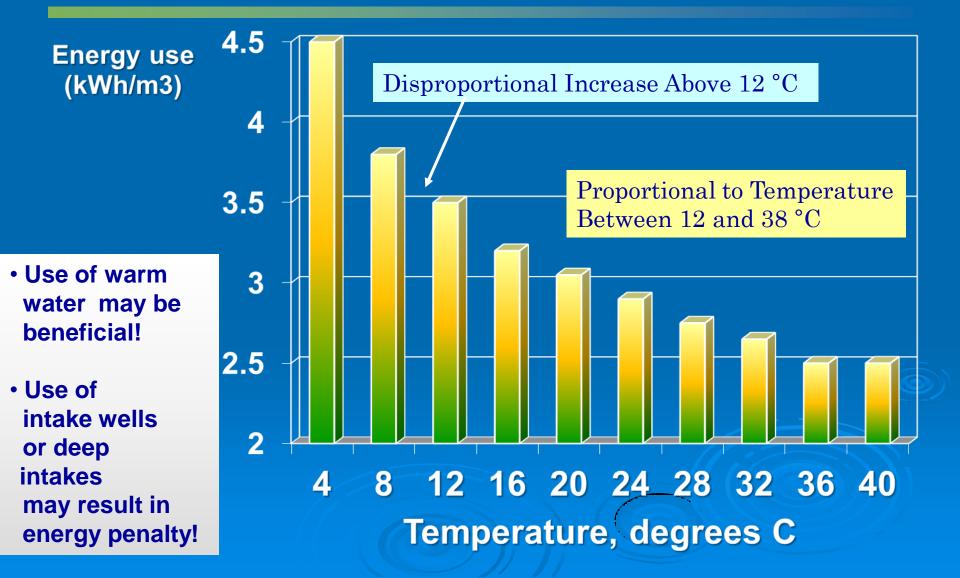
Factor	Energy Saving Approach	Potential for Energy Savings (%)
Source Water Salinity	Use Low-Salinity Source or Blend	1.5 to 5 times
Source Water Temperature	Use Warmer Source Water (Co-Location)	5 to 15 %
Membrane Element Losses and Productivity	Use Low-Rejection or Higher Productivity Membranes	5 to 10 %
RO Feed Pump Efficiency	Maximize Pump and Motor Efficiency	3 to 5 %
Recovery of Energy from RO Concentrate	Use Isobaric Chamber Technology	5 to 15 %

Power Reduction Using Lower Salinity Source Water

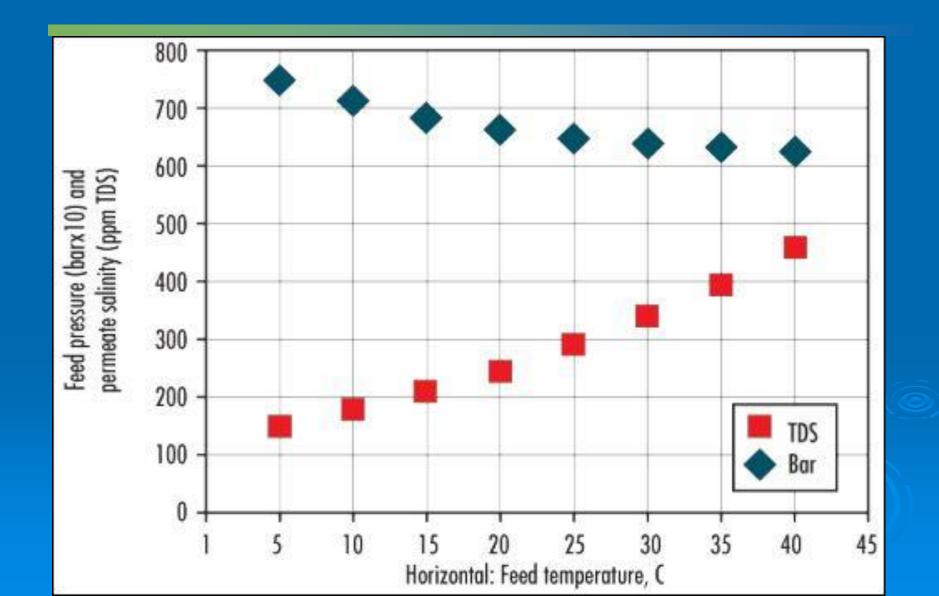
Use of brackish water when available – 1.5 to 5 times lower power costs

Co-desalination of brackish water and/or brine from brackish desalters with seawater

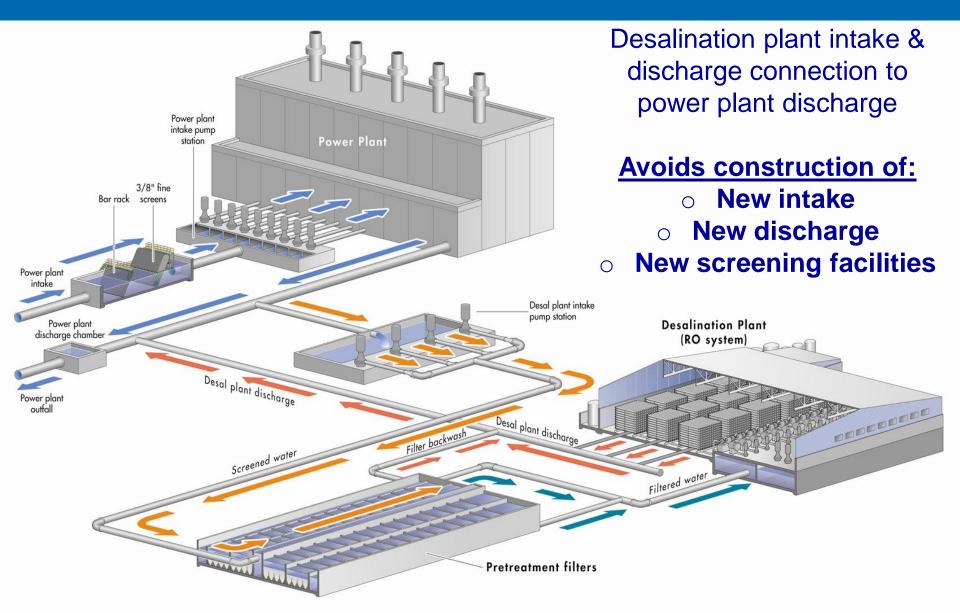
Use of lower salinity bay water vs. open ocean seawater


Integrating Collocation & Brackish Water Desalination Cost of water production $< 0.4 \text{ US}/\text{m}^{3}$ Energy use $< 1.5 \text{ kWh/m}^3$ Inland Municipality Inland Municipality Drinking Water Drinking Nater Inland Regional Brine Collector (Brackish Brine) Municipality Coastal Power Plant Inland **Brackish water** Desalination **Power Plant** Plant Cooling water Intake Regional Brine Collector (Brackish Brine) Brackish Brine rinking Intake Cooling Brackish water Discharge Intake Wells Coastal Discharge Drinking Municipality **Coastal Seawater Desalination Plant** Brackish Aquifer C. K. V

Integrating Brackish & Seawater Desalination –

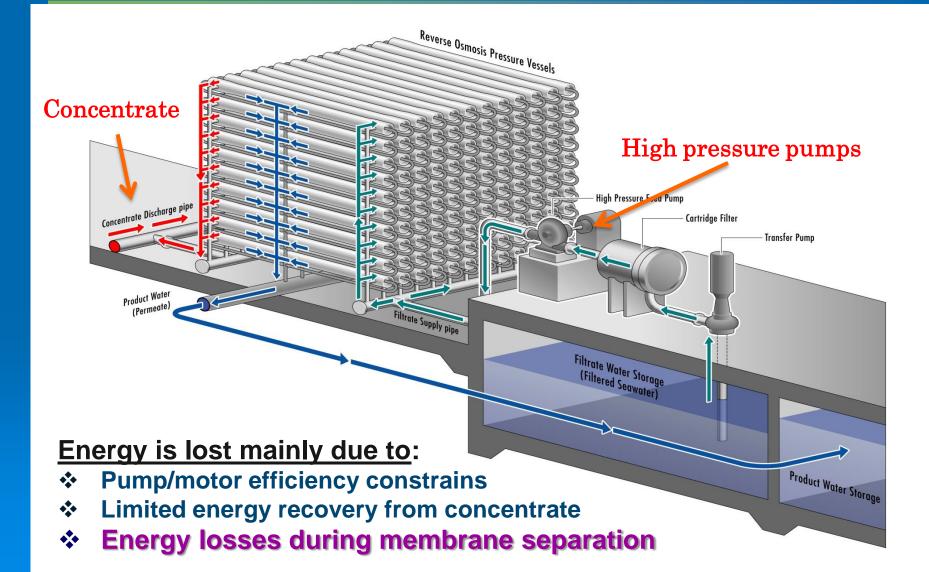

Where Would the Benefits Come From?

- > Higher SWRO plant recovery 65 % vs. 45 %
 - Lower salinity
 - Beneficial use of anti-scalant in brackish brine
- Lower energy use energy reduction proportional to brine flow & concentration
- > Avoided costs associated with brackish brine disposal
- Lower environmental impacts
 - Lower salinity of desalination plant discharge
 - Solution to ion-imbalance triggered toxicity of brackish brine


Influence of Temperature on Energy Use

Temperature and Water Quality

Collocation with Power Plant



Potential Energy Benefits of Collocation

- Power cost savings due to warmer source water \$5-15 % power use reduction
- Use of power plant "spinning reserve" energy where available
- Use of power plant emergency energy generator savings from avoidance of separate emergency power supply

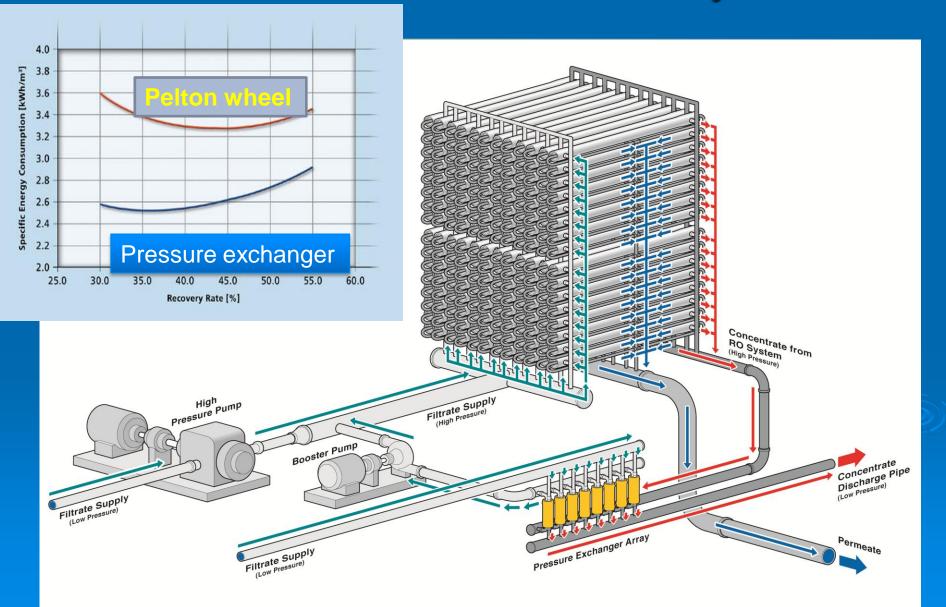
Potential avoidance of power grid connection charges/power tariff fees

Energy Losses in SWRO Systems

Pump & Motor Efficiency Constraints

- Typically all pumps higher than 200 hp are equipped with Premium Efficiency Motors (96 to 98% efficient)
- > Piston-driven pumps can be up to 98% efficient
- > Typical centrifugal pumps are 82 to 85% efficient
- Centrifugal pumps have theoretical efficiency limitation of 92%
- Pump efficiency increases with increase of pump size and with the decrease of the delivered pressure:
 - Bigger is better!
 - Two pumps in series are more efficient than one!

Piston Driven Pumps Have Highest Energy Efficiency (Up to 98 %)


Practical Applications

Piston high pressure feed pumps are widely used in small plants

Piston pumps are used as energy recovery devices (Pressure exchangers)

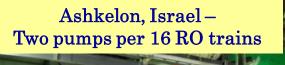
Newest trend – development of combination of piston high pressure feed pump & piston energy recovery device

Pressure Exchangers Pump Seawater @ 94 to 96 % Efficiency

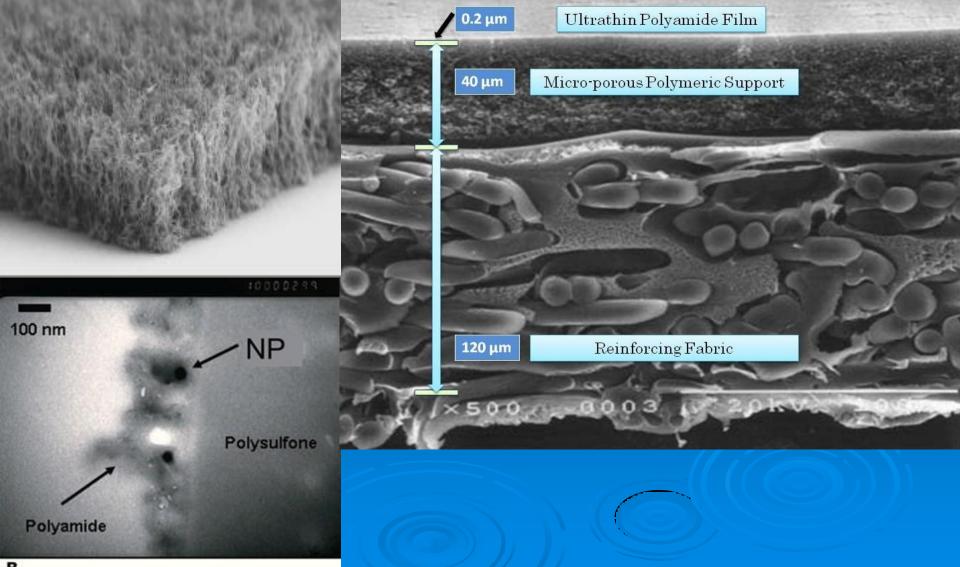
Pump Efficiency Increases with Pump Size

> Pump efficiency ~ n x $(Q/H)^{0.5}$ x $(1/H)^{0.25}$

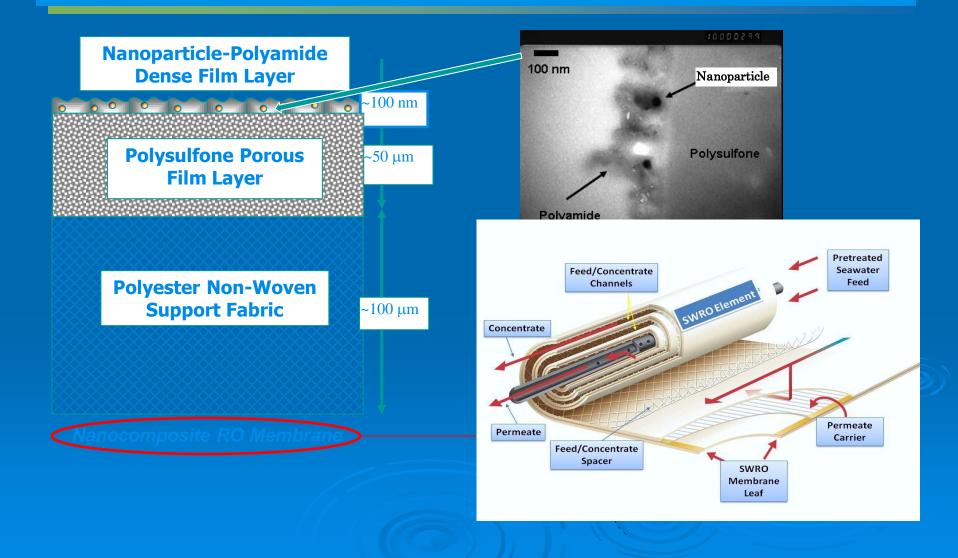
Where:


- n = pump speed (min -1);
- Q = nominal pump capacity (m³/s);

H = pump head (m).

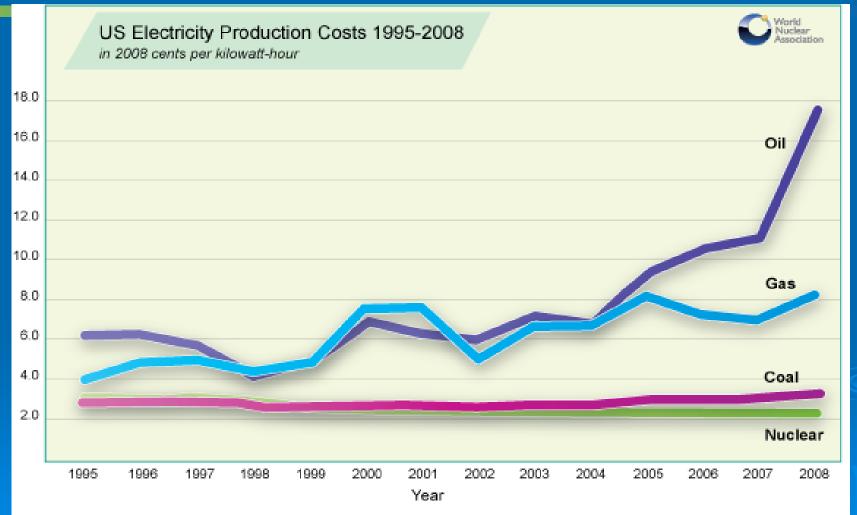

Pump efficiency

One pump per train – 83 % One pump per 2 trains – 85 % **Two pumps per 16 trains – 88 %**



Reducing Energy Losses Through the SWRO Membranes Nano-Structured SWRO Membranes

Nano-composite Membranes – NanoH2O


Other Energy Saving Approaches

RO Design Around Time-of-Use/Peak Load Reduction Rates.

- Peak Summer Day Saving Programs Power Bill Discount for Reduced Energy Use During Specified Summer Days.
- RO Design Around Interruptible Power Supply Tariff.
- Power Self-Generation (Use of Natural, Methane or Landfill Gas to Run Gas Generators or Gas Driven Engines).

Use of Waste Heat from Power Plants or Other Sources.

Power Self-Generation from Natural Gas – Why it May Make Sense?

Production Costs = Operations & Maintenance + Fuel. Production costs do not include indirect costs or capital.

Source: Ventyx Velocity Suite, via NEI

Ashkelon SWRP Plant – Power Self-generation System

EMFNE

Energy Saving Approaches/Alternatives (Continued)

- Stimulate Private Power Generation Companies to Get Involved in Seawater Desalination – Savings from Economies of Scale and Synergies Between Energy and Water Production.
- Encourage Industries to Build Desalination Plants for Their Water Supply and Reduce Reliance On Municipal Water Supply.
- Introduce High-Efficiency Equipment Rebates for Desalination Plants.
- Fund R&D Efforts to Develop the Next Generation of Energy Efficient Desalination Technologies.

Renewable Energy Desalination

Solar Desalination

- Total Installed Capacity Worldwide 0.88 MGD
- Over 80 % in the Middle East;
- Largest Facilities in Libya (0.40 MGD) and UAE (0.15 MGD).
- Largest Plant Outside the Middle East Spain

> Wind Powered Desalination

- Total Installed Capacity Worldwide 0.66 MGD
- Over 95 % in the Middle East;
- Largest Facilities in Libya (0.53 MGD) and Egypt (0.11 MGD);
- Largest Plant Outside the Middle East Spain
- Solar & Wind Desal Plants
 - 0.02% of Total Plant Capacity Worldwide;
 - 67 % Brackish & 33 % Seawater Plants.

Solar Desalination – Photovoltaic (PV) Panels

- Cost of Produced Power = US\$0.12 \$0.40/kWh
- Cost of Produced Water = \$2,000 \$3,000/AFY
- 1,000 gpd PV-RO Plant Costs ~ US\$50,000 & Needs 150 sq ft of Solar Panels
- Small Size (Yacht) Units 160 gpd US\$10,000
- Commercially Available Container Systems up to 50,000 gpd

Solar Desalination – Costs & Viability

- Cost of Generated Energy US\$0.12 0.40/ KWh Suitable for Small Plants (< 1 m³/day);
- Production of 100 gpd Requires 150 Watts (approx. 15 to 20 sq ft of PV panels);
- Cost of 1 sq ft of Solar Panels = \$30 to \$50/sq ft
- 1 MGD Plant Needs 3.4 to 4.5 acres of PV Panels (\$4.5 MM to \$10 MM).
- The Footprint of the Desalination Plant is 0.5 acres/(Construction Cost - \$4.5 to 5.0 MM).

Wind-Powered Desalination

Wind Turbines

Surplus Energy Sale to Grid or Storage in Batteries

Many RO Units of Small Capacity to Match Power

Generation Pattern Flywheel to Smooth Out Fluctuations

Most Suitable Locations – Along the Coast & Passes or Canyons Inland

When Available Power Is Low System Typically Operates at Low Recovery – 10 % for Seawater Constant Speed Turbines

Wind-Powered Desalination

More Promising for Coastal Areas With Strong Winds;

Cost of Generated Power - US\$0.15 to \$0.20/kWh;

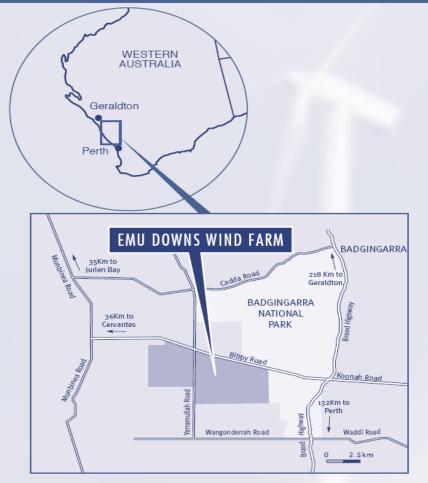
Suitable for Areas with Wind Speed > 18 fps

More Cost Effective if it Can Supply Excess Energy to the Electric Grid.

Perth Seawater Desalination Project

Stanwell/Griffin Joint Venture – Emu Downs wind generation facility –at Badgingarra 200 km north of Perth

Water Corporation is purchasing 68 percent of the energy output 24 MW (185 GW hrs/annum) Opened on 12 November 2006



Courtesy of the Water Corporation

Perth Seawater Desalination Project

LOCATION OF EMU DOWNS WIND FARM

Emu Downs Wind Farm is located 30 kilometres east of Cervantes on Bibby Road, Badgingarra. The site is approximately 200 kilometres north of Perth and can be reached via the Brand Highway. Capacity = 80 MW Number of Turbines = 48 Hub Height= 68 m Blade Length= 41 m Wind Farm Area= 31 km2

> Courtesy of the Water Corporation

Variable O&M Costs - Chemicals

Annual O&M Cost Breakdown			
Cost Item	Percentage of Total O&M Cost (%)		
	Low-Complexity Project	High-Complexity Project	
Variable O&M Costs			
5. Power	45.0 - 61.0	35.0 - 58.0	
6. Chemicals	3.0 – 6.5	5.5 – 9.0	
 Replacement of Membranes and Cartridge Filters 	5.0 – 9.0	6.5 – 11.0	
8. Waste Stream Disposal	2.5 – 5.5	3.5 – 7.0	
Subtotal - Variable O&M Costs	55.5 - 82.0	50.5 - 85.0	
Fixed O&M Costs			
5. Labor	5.0 – 9.5	4.0 - 11.0	
6. Maintenance	6.5 – 12.5	3.0 - 13.0	
7. Environmental and Performance Monitoring	0.5 – 4.0	1.0 – 5.0	
8. Indirect O&M Costs	7.5 – 18.5	7.0 – 20.5	
Subtotal - Fixed O&M Costs	19.5 - 44.5	15.0 - 49.5	
Total O&M Costs	100 %	100 %	

Typical Chemicals Used in Desalination Plants

Properties of Commonly Used Conditioning Chemicals

Chemical	Typical Application	Typical Product Concentration %	Bulk Density kg/Liter	Application Concentration %
Liquid Ferric Chloride	Coagulation	40	1.42	5
Liquid Ferric Sulfate	Coagulation	40	1.55	5
Sulfuric Acid	pH Adjustment	98	1.83	20
Sodium Hypochlorite	Biogrowth Control	13	1.23	5
Sodium Bisulfite	Dechlorination	99	1.48	20
Antiscalant	Scale Control	99	1.0	20
Sodium Hydroxide	pH Adjustment	50	1.525	20

Unit Costs of Typical Chemicals

Unit Chemical Costs				
Chemical	Unit cost (US\$/kg)			
Chlorine Gas	0.5 - 1.0			
Sodium Hypochlorite	2.0 - 3.0			
Ferric Sulfate and Ferric Chloride	0.3 - 1.0			
Sulfuric Acid (93 % H ₂ SO ₄)	0.05 - 0.08			
Citric Acid	1.5 - 2.5			
Biocide	2.5 - 5.0			
Sodium Hydroxide (50 % <u>NaOH</u>)	0.6 - 0.75			
Sodium Bisulfite	0.3 – 0.5			
Antiscalant (Scale-Inhibitor)	1.5 - 4.0			

Unit Cost of Typical Chemicals (Continued)

Sodium Bisulfite	0.3 - 0.5
Antiscalant (Scale-Inhibitor)	1.5 - 4.0
Ammonium Hydroxide	0.5 - 1.0
	0.0 1.0
Hydrated Lime	0.26 - 0.28
ii y diated Linie	
0.1.2	0.02 0.04
Calcite	0.03 - 0.04
	0.07 0.00
Carbon Dioxide	0.07 - 0.09
	1.5 2.0
Sodium Tripolyphosphate (Corrosion Inhibitor)	1.5 - 3.0
Other Cleaning Chemicals (US\$/m ³ of permeate)	0.004 - 0.006

Calculation of Daily Chemical Use & Annual Costs (Example – Coagulant)

- Desalination Plant Capacity Q = 10,000 m3/day (50 % recovery)
- Intake Capacity Q i= (Q /Recovery) x 1.10
- Q i = (10,000/0.5) x 1.1 = 22,000 m3/day
- Coagulant (Fe) Dosage = 10 mg/L (0.01 kg/m3)
- Coagulant Use (100 %) = Qi x Fe dosage = 22,000 x 0.01 = 220 dry kg/day of coagulant
- Annual Cost of Coagulant = Unit Cost (US\$1/dry kg) x 220 dry kg/day x 365 days = US\$80,300/year

Example of Chemical Costs of 40 MIGD (182 MLD) Plant

Chemical	Dosage	Cost per	Kgs	Cost per	Costs per Day	Annual Cost(k\$/yr)	Projected	Actual Cost
	(mg/L)	kg (\$/kg)	per m³	m ³	(\$/day)	for Continuous Feed	Feed (%/yr)	per Year (k\$/yr)
Sodium Hypochlorite (Pre- and Post-treat.)	8	2.000	0.0080	0.0160	7429	2711	25%	678
Ferric Sulfate/Chloride (Pretreatment)	10	0.400	0.0100	0.0040	1857	678	100%	678
Polymer (Pretreatment)	0.5	1.000	0.0005	0.0005	232	85	100%	85
Hydrochloric acid (Pretreatment)	40.0	0.085	0.0400	0.0034	1579	576	100%	576
Sodium Bisulfite (Pretreatment)	24.0	0.400	0.0240	0.0096	<mark>4</mark> 457	1627	25%	407
Antiscalant (Pretreatment)	2.5	2.500	0.0025	0.0063	2902	1059	100%	1059
Biocide (Pretreatment)	2.2	2.500	0.0022	0.0055	2554	932	25%	233
Sodium Hydroxide (Boron Removal)	40	0.600	0.0400	0.0240	11143	4067	25%	1017
Hydrochloric Acid (Post-treatment)	70	0.085	0.0700	0.0060	1081	395	100%	395
Limestone (Post-treatment)	70	0.060	0.0700	0.0042	763	279	100%	279
RO Membrane Cleaning Chemicals- 6 clean	ings/yr					180	100%	180
UF Membrane CIP Cleaning Chemicals - 12	cleanings/yr					120	100%	120
					Total Annual (Chemical Costs (1,000	US\$/year)	\$ 5,705

Variable O&M Costs – Replacement of Cartridge Filters and RO Elements

Annual O&M Cost Breakdown			
Cost Item	Percentage of Total O&M Cost (%)		
	Low-Complexity Project	High-Complexity Project	
Variable O&M Costs	•		
5. Power	45.0 - 61.0	35.0 – 58.0	
6. Chemicals	3.0 – 6.5	5.5 - 9.0	
 Replacement of Membranes and Cartridge Filters 	5.0 – 9.0	6.5 – 11.0	
8. Waste Sfream Disposal	2.5 – 5.5	3.5 – 7.0	
Subtotal - Variable O&M Costs	55.5 - 82.0	50.5 - 85.0	
Fixed O&M Costs	•		
5. Labor	5.0 – 9.5	4.0 - 11.0	
6. Maintenance	6.5 - 12.5	3.0 – 13.0	
7. Environmental and Performance Monitoring	0.5 – 4.0	1.0 - 5.0	
8. Indirect O&M Costs	7.5 – 18.5	7.0 – 20.5	
Subtotal - Fixed O&M Costs	19.5 - 44.5	15.0 - 49.5	
Total O&M Costs	100 %	100 %	

Replacement of Cartridge Filters (CFs)

- Cartridge Filter Replacement Rate = Once Every 4 to 6 weeks (avg. once per 2 months)
- Cartridge Filter Costs US\$8 15/CF
- Cartridge Filter Number Rule of Thumb 25 CFs/1,000 m³.day

Example:

Desalination Plant Capacity Q = 10,000 m3/day;

- Total Number of CFs = (10,000 x 25)/1000 = 250 CFs
- Annual Replacement Cost @ US\$10/CF = 250 CFs x 6 times per year x US\$10/CF = US\$15,000/year.

Replacement of RO Elements

Avg. SWRO & BWRO Element Replacement Rates = 15 %/yr & 10 %/yr, respectively

- RO Element Costs US\$400 550/Element
- SWRO Element Number Rule of Thumb 90/1,000 m³.day
- BWRO Element Number Rule of Thumb 30/1,000 m³.day
 Example:

Desalination Plant Capacity Q = 10,000 m3/day;

- Total Number of SWRO membranes = 10,000 x 90/1000 = 900
- Total Number of BWRO membranes = 10,000 x 30/1000 = 300

Annual Replacement Cost @ US\$450/RO_Element = (900 x 0.15 + 300 x 0.1) /year x US\$450/RO Element = US\$74,250/year.

Variable O&M Costs – Waste Stream Disposal

Cost Item	Percentage of To	Percentage of Total O&M Cost (%)			
	Low-Complexity Project	High-Complexit Project			
Variable O&M Costs					
5. Power	45.0 – 61.0	35.0 – 58.0			
6. Chemicals	3.0 – 6.5	5.5 – 9.0			
7. Replacement of Membranes and Cartridge Filters	5.0 – 9.0	6.5 – 11.0			
8. Waste Stream Disposal	2.5 – 5.5	3.5 – 7.0			
Subtotal - Variable O&M Costs	55.5 - 82.0	50.5 - 85.0			
Fixed O&M Costs					
5. Labor	5.0 - 9.5	4.0 - 11.0			
6. Maintenance	6.5 – 12.5	3.0 – 13.0			
7. Environmental and Performance Monitoring	0.5 – 4.0	1.0 – 5.0			
8. Indirect O&M Costs	7.5 – 18.5	7.0 – 20.5			
Subtotal - Fixed O&M Costs	19.5 - 44.5	15.0 - 49.5			
		100 %			

Variable O&M Costs Waste Stream Disposal

Waste Stream Disposal - US\$0.01 to 0.03/m³

Includes:

- Concentrate Discharge
- Spent Backwash Water from Pretreatment Filters
- Discharge of Cleaning Solutions from RO System
- Other Waste Streams

Questions?

Lunch Break

