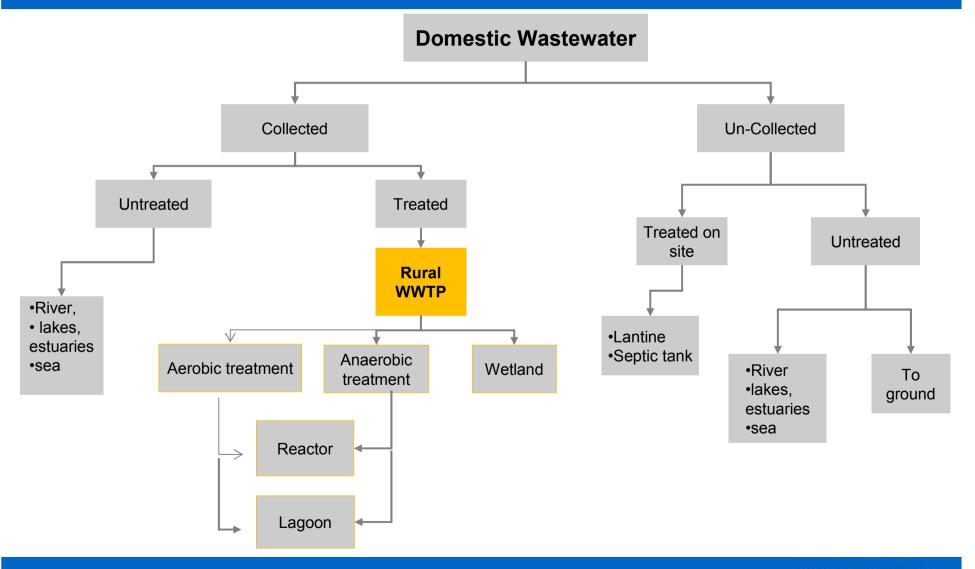
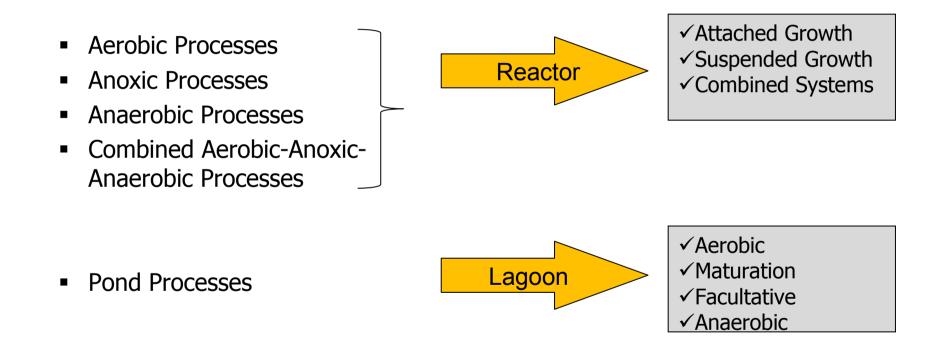


SUB-REGIONAL WORKSHOP 9-12 July 2012 Israel


-
 - Wastewater Treatment Technology
 - What is the Best Available Technology for biological wastewater treatment in Rural Area?
-
 - E.ling

- Overview of the Biological Wastewater
 Treatment Processes
- Review of new generation of Biological
 Treatment Technologies
- Consideration for choosing BAT for biological treatment technology in Rural WWTP's applications

Domestic Wastewater Path



Gateway to solutions

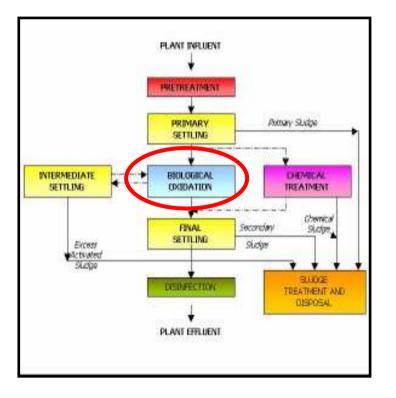
1]|||||

Biological Treatment Types

Reminder

✓ Overview of the Biological Wastewater
 Treatment Processes

- Review of new generation of Biological
 Treatment Technologies
- Consideration for choosing BAT for biological treatment technology in Rural WWTP's applications


New Generation

Gateway to solutions

New Generation-Integration of Technologies

- The biological treatment is the heart of the wastewater treatment plant.
- Defining a BAT for biological treatment will effect the entire plant's technology choices.
- Question: What are the consequences of choosing one technology over another?

Reminder

✓ Overview of the Biological Wastewater
 Treatment Processes

- ✓ Review of new generation of Biological
 Treatment Technologies
- Consideration for choosing BAT for biological treatment technology in Rural WWTP's applications

The four Parameters to consider

TABLE 3-16 Typical composition of untreated domestic wastewater

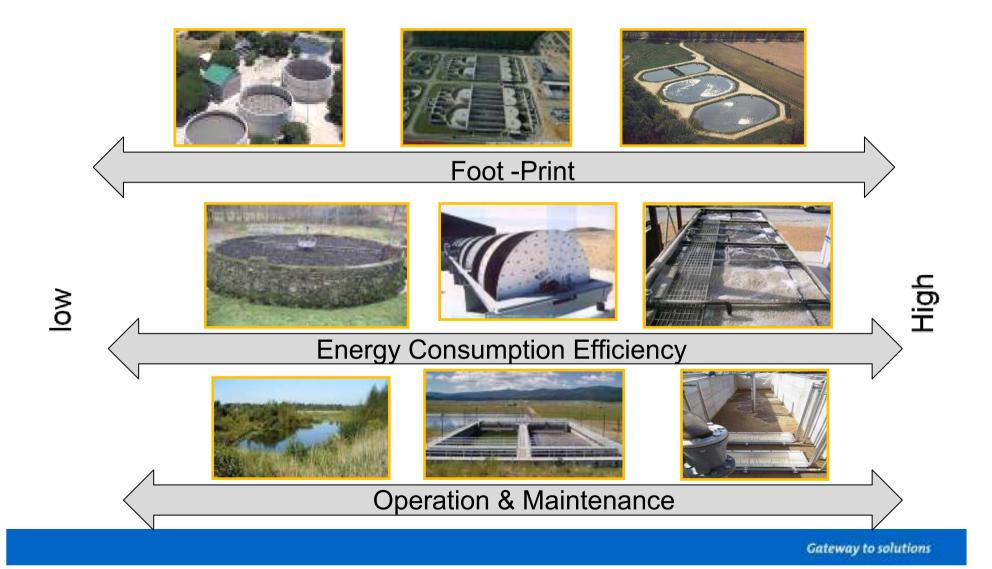
		Concentration			
Contaminants	Unit	Weak	Medium	Strong	
Solids, total (TS)	mg/L	350	720	1200	
Dissolved, total (TDS)	mg/L	250	500	850	
Fixed	mg/L	145	300	525	
Volatile	mg/L	105	200	325	
Suspended solids (SS)	mg/L	100	220	350	
Fixed	mg/L	20	55	75	
Volatile	mg/L	80	165	275	
Settleable solids	mL/L	5	10	20	
Biochemical oxygen demand, mg/L:		110	222	400	
5-day, 20°C (BOD ₅ , 20°C)	mg/L	110	220		
Total organic carbon (TOC)	mg/L	80	160	290	
Chemical oxygen demand (COD)	mg/L	250	500	1000	
Nitrogen (total as N)	mg/L	20	40	85	
Organic	mg/L	8	15	35	
Free ammonia	mg/L	12	25	50	
Nitrites	mg/L	0	0	0	
Nitrates	mg/L	0	0	0	
Phosphorus (total as P)	mg/L	4	8	15	
Organic	mg/L	1	3	5	
Inorganic	mg/L	3	5	10	
Chlorides ^a	mg/L	30	50	100	
Sulfate ^a	mg/L	20	30	50	
Alkalinity (as CaCO ₃)	mg/L	50	100	200	
Grease	mg/L	50	100	150	
Total coliform ^b	no/100 mL	10 ⁶ -10 ⁷	10 ⁷ -10 ⁸	10 ⁸ –10 ⁹	
Volatile organic compounds (VOCs)	μg/L	<100	100-400	>400	

^a Values should be increased by amount present in domestic water supply.

^bSee Table 3-18 for typical values for other microorganisms.

Note: 1.8(°C) + 32 = °F.

Product Quality


•The product (effluent) quality depends on the target of the usage

- •Different countries have different standards...
- •There are exceptions rural WWTP's, which gets temporary or permanent discounts in the emission criteria

Sustainability of the technology

Overall Costs

Treatment Process	Achievable Effluent Quality (mg/L)		Construction Costs of Treatment Processes by Design Flow (GPD) ^b					
100 - FRANKSKI AND AND A	TN	P ^a	4K GPD	10K GPD	25K GPD	50K GPD	100K GPD	
	59) 		Constructi	on Costs			37 III - III - III -	
1. MLE Process	10	2	\$261,000	\$311,000	\$422,000	\$601,000	\$874,000	
2. Four-Stage	6	2	\$336,000	\$368,000	\$475,000	\$666,000	\$968,000	
3. Three-Stage	6	2	\$291,000	\$333,000	\$441,000	\$627,000	\$913,000	
4. SBR	8	2	\$336,000	\$381,000	\$482,000	\$697,000	\$966,000	
5. Intermittent Cycle	8	2	\$229,000	\$374,000	\$584,000	\$861,000	\$1,026,000	
6. MLE + Deep Bed Filtration	6	1	\$308,000	\$368,000	\$486,000	\$664,000	\$958,000	
7. Submerged Biofilters	12	2	\$247,000	\$296 <mark>,00</mark> 0	\$450,000	\$847 <mark>,0</mark> 00	(c)	
8. RBCs	12	2	\$263,000	\$342,000	\$527,000	\$868,000	\$1,092,000	
			O&M Cost	s (\$/year)				
1. MLE Process	10	2	\$30,400	\$35,500	\$49,400	\$66,600	\$100,100	
2. Four-Stage	6	2	\$52,500	\$57,600	\$73,800	\$95,900	\$132,300	
3. Three-Stage	6	2	\$35,900	\$41,900	\$56,400	\$76,200	\$115,900	
4. SBR	8	2	\$28,000	\$34,100	\$49,100	\$67,600	\$100,000	
5. Intermittent Cycle	8	2	\$28000	\$34100	\$49100	\$67600	\$100,000	
6. MLE + Deep Bed Filtration	6	1	\$36,900	\$42,700	\$58,100	\$75,900	\$111,400	
7. Submerged Biofilters	12	2	\$19,500	\$24,400	\$41,100	\$60,400	(c)	
8. RBCs	12	2	\$22,000	\$26,500	\$39,200	\$52,100	\$78,000	

Source: Foess et al. (1998)

Gateway to solutions

The four Parameters to consider

Looking Forward

As time goes by, the technologies get more intensive & compact, the demands from the "microbial workers" gets higher, as well as regulatory demands.

We should expect that the requirements for using BAT will follow a similar path and therefore be prepared to properly asses our needs when choosing the right one.