Natural treatment systems for waste water Soil Aquifer Treatment (SAT) to optimize water use and to accommodate irrigation July 11, 2012 Jos Peters jos.peters@rhdhv.com # Why think about recharge and recover (of treated waste water)? - Region faces water scarcity (low rainfall, high evaporation) - Overexploitation and decline of water table is reported - Groundwater situation is very precarious - Wadis actually did not carry water for decades, not even in short monsoon periods - Local surface water as well as import from other areas, is not an option - Project area is a large basin consisting of coarse and permeable sands and gravel above underlying rock #### For sustainability it is essential to: - Impose stringent restrictions regarding water use to cut down on demands and limit consumption - Harvest and capture rainfall and prevent it from evaporating - Attract industries with low water consumption and large degrees of recycling and water reuse - Minimize evaporation losses due to irrigation - Assist farmers to shift to more efficient irrigation - Promote drip irrigation, stimulate transition to less water demanding crops - Think about SAT #### SAT, what is it? - Managed aquifer recharge ... as well as - Additional waste water treatment (beyond primary or secondary) - It produces water for indirect potable use - SAT breaks the pipe to pipe connection - A natural psychological barrier It removes the social issue and brings public acceptance of (indirect) water use # SAT mechanisms responsible for improvement of water quality - Waste water is subjected to a natural combination of physical, chemical and biological processes - Filtration, precipitation, ion exchange, adsorption and desorption, complexation, redox reactions, microbial degradation, dilution #### Comparison of natural and conventional treatment | | Natural treatment (SAT) | Conventional treatment | |-----------------------------|---|--| | Ammonia | Nitrification (oxic) | Oxidation, stripping | | Nitrate | Denitrification (anoxic) | Ion exchange, RO | | Particles, suspended solids | Filtration | Coagulation, flocculation, (membrane) filtration | | Microorganisms | Filtration, inactivation, natural die-off | Filtration, disinfection | | Micropollutants | Adsorption, precipitation, biodegradation | Coagulation, ion exchange, RO, oxidation, adsorption | | Phosphorus | Adsorption, precipitation | Chemical precipitation | | | | Altijd een oplossing ven | ## Business case for Recycle, Reuse or Recharge of normal effluent: comparison of three options - Recycle: Distribution of B-grade water produced by additional treatment of normal effluent - 2 Direct Reuse of effluent as irrigation water in agriculture - SAT (or Aquifer Recharge and recovery) for agricultural, industrial or domestic use | | B-grade water | | |-------|---|--| | | Recycle | | | Pro's | - Savings on demand and plant size for drinking water | | | Con's | Only part can be reused for toilet flushing Serious health risk due to cross connections Costly separate system for distribution Additional treatment of effluent | | | | B-grade water Recycle | Direct Reuse in agriculture | |-------|---|---| | Pro's | - Savings on demand and plant size for drinking water | all of the effluent can be reused Farmers are willing to pay ('rich water, containing nutrients') no additional treatment (in case of flooding the part of the water that percolates is treated 'naturally' | | Con's | Only part can be reused for toilet flushing Serious health risk due to cross connections Costly separate system for distribution Additional treatment of effluent | - difficult to collect fees - extra treatment is required in case of sprinkling of drip - regulation needed because only part of farmers benefit - limited crops can be grown with this water (not raw eaten vegetables) - requires a channel distribution system | | | B-grade water Recycle | Direct Reuse in agriculture | Indirect use via artificial Recharge | |-------|---|---|--| | Pro's | - Savings on demand and plant size for drinking water | all of the effluent can be reused Farmers are willing to pay ('rich water, containing nutrients') no additional treatment (in case of flooding the part of the water that percolates is treated 'naturally' | aquifer is natural filter for pathogens all crops can be grown no need for extra distribution system irrigation water in case of ponding combinations of functions is an option (recreation, theme park, cycling) recovered water has constant quality | | Con's | Only part can be reused for toilet flushing Serious health risk due to cross connections Costly separate system for distribution Additional treatment of effluent | difficult to collect fees extra treatment is required in case of sprinkling or drip regulation needed because only part of farmers benefit limited crops can be grown with this water (not raw eaten vegetables) requires a channel distribution system | - discussion to what level the water should be treated - area/land needed in case of ponding | | | B-grade water Recycle | Direct Reuse in agriculture | Indirect use via artificial Recharge | |-------|---|---|--| | Pro's | - Savings on demand and plant size for drinking water | all of the effluent can be reused Farmers are willing to pay ('rich water, containing nutrients') no additional treatment (in case of flooding the part of the water that percolates is treated 'naturally' | - aquifer is natural filter for pathogens - all crops can be grown - no need for extra distribution system irrigation water - in case of ponding combinations of functions is an option (recreation, theme park, cycling) - recovered water has constant quality | | Con's | - Only part can be reused for toilet flushing - Serious health risk due to cross connections - Costly separate system for distribution - Additional treatment of effluent | difficult to collect fees extra treatment is required in case of sprinkling or drip regulation needed because only part of farmers benefit limited crops can be grown with this water (not raw eaten vegetables) requires a channel distribution system | - discussion to what level the water should be treated - area/land needed in case of ponding | # What about capital costs of the three options | B-grade water Recycle | Direct Reuse in agriculture | Indirect use via artificial Recharge | |--|--|--| | - Extra costs for additional treatment of part of the effluent - Reduced costs of smaller drinking water treatment and less abstraction wells - Costs of extra distribution system | - In case of sprinkling or drip irrigation extra treatment is required - Costs of a channel distribution system | - Costs of land may be high. But in case of an in- or near stream ARsite, it is not needed to acquire land | #### **Conclusions** SAT is very promising and helps accommodating development based on local water resources and helps restoring water deficit In particular if geo-physical and local conditions are favourable: relatively flat area, non consolidated soils, high permeability, land available #### Further reading and acknowledgement - Artificial Groundwater Recharge (L. Huisman and Th. N. Olsthoorn), Faculty of Civil Engineering, University Delft, 1989 - Artificial Recharge of Groundwater, Proceedings of International Symposium Helsinki, Finland (1996) - Artificial Recharge of Groundwater, Proceedings of Third International Symposium on Artificial Recharge of Groundwater, Amsterdam (1998) - Australian guidelines for water recycling: managing health and environmental risks, managed aquifer recharge (National Water Quality Strategy), 2009 - Sharma, Saroj K & Gary Amy, Chapter 15. Natural Treatment Systems. In: Drinking Water Treatment: Handbook of Water Supply. AWWA, Sixth edition, Mc Graw Hill Publications, USA