

Deux jours de FORMATION SUR LE FONCTIONNEMENT ET LA GESTION DES STEPS

9-10 Septembre 2013, Murcia

Introduction

Présenté par: Ricardo Egea

Index

- 1. Eaux usées industrielles
- 2. Méthodologie pour la conception
- 3. Technologies
- 4. Exemples de traitements avancés

Que sont que les eaux usées industrielles?

Qu'est-ce que les eaux usées industrielles?
□Elles comprennent tous les déchets de l'eau des installations à l'exception
□de l'épuration.
Qualité et quantité
□Matières premières.
□Le processus industriel générant l'eau: lavage des matières premières, eau de
nettoyage des produits finis, chauffe-eau et purge des tours de
refroidissement, etc.
□Nombre de réutilisations de l'eau (augmentation ou baisse potentielle du
niveau de concentration des contaminants).
□Réactions survenant lors du processus industriel.
□Température ou additifs tels que les biocides, antitartres ou ajusteurs de pH

Réutilisation potentielle des eaux usées industrielles

Avec une gestion adéquate, pouvant inclure le traitement, les eaux usées industrielles peuvent être réutilisées dans de nombreux domaines:

Heagos industrials

Osages illuusti leis	
□Lavage	□Refroidissement
☐ Ligne de production (dilution	s) Chauffe-eau et purge des tours de refroidisseme
Usages non industriels	
□ Irrigation terrains/cultures	□Services commerciaux de nettoyage de voitures
□Élimination de la poussière	□Construction (par ex. routes)
□ Protection incendies	a construction (par ex. routes)

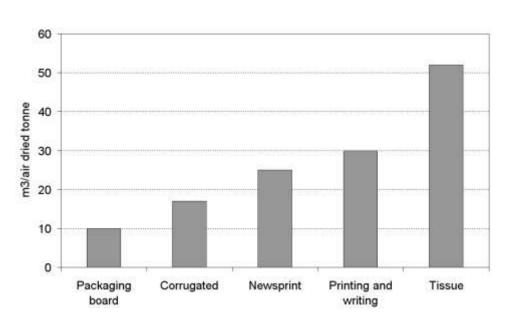
Tout usage proposé des eaux usées industrielles doit être étayé par une évaluation spécifique des risques sur la santé et l'environnement.

Réutilisation potentielle des eaux usées industrielles

Réutilisation potentielle des eaux usées pour les industries

Faible potentiel Fort potentiel Potentiel moyen Tannerie et finitions cuir Pâte et papier◆ Abattoir Coton • Traitement de la viande Pesticide Verre et acier Laiterie Caoutchouc • Mise en conserve et Aluminium transformation alimentaire Usines d'explosifs Distillerie Usines de peinture Laine Chimique Fertilisants Raffinage du pétrole

Fort volume d'eaux usées + faible concentration de polluant→ Fort potentiel Faible volume d'eaux usées + forte concentration de polluant→ Faible potentie


Pâte et papier

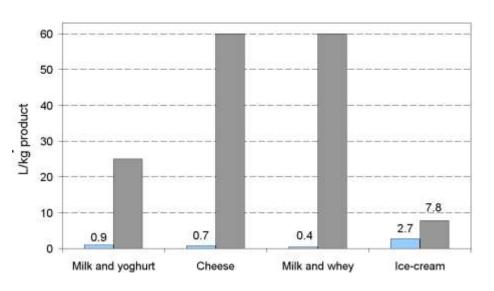
Sources des eaux usées

- □ Rejets d'épuration
- □Excès d'eau vive

- □ Rejets temporaires et accidentels
- □ Eau de refroidissement et d'étanchéité

Volume d'effluent face au type de papier

Contaminant (kg/tonne de produit)

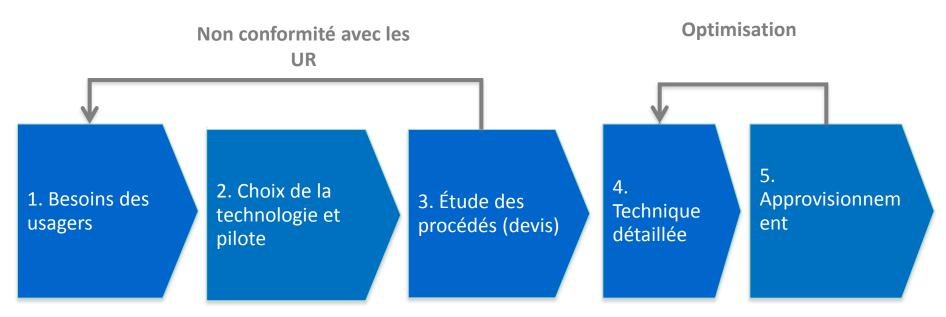

Type de papier	TSS	BOD5
Carton d'emballage	22-30	9-18
Carton ondulé	22-30	11-26
Papier journal	9-26	4-9
Impression et écriture	22-45	9-22
Tissu	13-45	4-13

Industrie laitière

Sources des eaux usées

- □ Eau de nettoyage: équipements, purge en cas de changement de produit
- □ Produit perdu lors des démarrages, arrêts, rejets accidentels
- ☐ Perte de condensats lors de la production de petit-lait ou poudre de lait

Volume d'effluent face au type de produit



Contaminant (kg/tonne de produit)

Type de produit	BOD5
Lait entier	104 000
Lait écrémé	67 000
Sérum	34 000
Yaourt	91 000
Glace	292 000

Ne pas se précipiter pour définir une solution!!

La conception est un processus itératif avec des étapes clé

Les premières étapes sont les plus critiques

Besoins des usagers

- ☐ Qualité des eaux usées, composants, variations, volumes, etc. Bonne identification des contaminants et scénarios. POTENTION DE RÉUTILISATION?
- ☐ Type d'usage: connaissances avancées, moyennes, faibles en automatisation et technologies complexes
- □ Travail en quarts: 1, 2, 3, 5? Continu ou arrêt le weekend?
- □ Préférences de coûts: Sont-ils concentrés sur l'optimisation de l'investissement ou les frais de fonctionnement? Très automatisé ou en grande partie manuel?
- □ Production et expansion future
- □ Espace disponible pour empreinte et fonctionnement (gestion de la boue)

Les premières étapes sont les plus critiques

2. Choix de la technologie et pilote

- □ Le COD, BOD5 et TS ne sont qu'une petite partie des problèmes que vous pourrez rencontrer lors du traitement des eaux usées industrielles. Donc les ESSAIS EN LABORATOIRE OU PILOTE SONT OBLIGATOIRES!!
- ■Ne vous engagez pas dans une seule technologie dans votre première approche. Comparez différentes alternatives même s'il y un bon candidat
- □ Pas de solution magique. La thermodynamique et autres lois de la nature vous attendent au tournant
- □ La technologie est vendue au premier jour de rendement.

 Avoir une vision à long terme lors du choix et des

 dimensions
- ☐ Une technologie avancée fonctionnant bien est toujours la meilleure alternative

Le procédé est la clé du succès

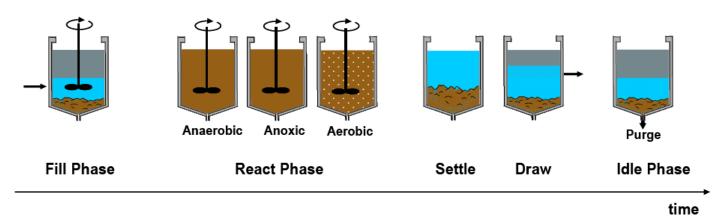
3. Étude des procédés (devis)

- ☐ Se concentrer sur le processus et la performance. Les dimensions de vos équipements clé et réacteurs sont les problèmes importants de la conception et occupent une grande part du budget. Concentrez vous là-dessus.
- □ Ne soyez pas trop avide et trop optimiste et créer avec une vision à long terme.
- ☐ Basé sur une stratégie claire définissez rapidement votre création électrique-automatique et demandez des devis professionnels. Grosses surprises
- Les interfaces et fourniture de services (électricité, eau du robinet..) sont très importants et souvent un problème difficile à résoudre. Le plus tôt sera le mieux
- □ FAITES PARTICIPER LE PROPRIÉTAIRE!!!!

Le procédé est la clé du succès

4. Technique détaillée

- □ Commencez avec les interfaces et services. Il y a de nombreux acteurs pour tomber d'accord là-dessus donc cela prend du temps de décider d'une solution partagée.
- □ Préparez et spécifiez l'annexe des interférences avec le site existant et son fonctionnement normal. Les installations industrielles ne sont pas des projets entièrement nouveaux et sont intégrés dans des installations existantes avec une activité intense.
- □ Garder un œil sur les technologies et fournisseurs dont dispose l'industrie et les mettre sur la liste des priorités. N'essayez pas de changer la façon de travailler ou importer des solutions fantaisistes.
- □ Soyez informés des compétences de l'équipe de construction pour définir votre niveau de détail.


Les premières étapes sont les plus critiques

5. Approvisionne ment

- □ Pas de fournisseurs magiques. Les bonnes technologies et équipement au prix juste vont de pair.
- □ Le coût des ressources humaines de composants de faible qualité prend le pas sur les économies possibles en approvisionnement
- □Les fournisseurs existants de l'industrie sont toujours le meilleur choix. S'ils sont en-dessous de vos besoins technologiques retournez au point 4.
- □Les dates de livraison sont toujours trop optimistes. Elles sont données par un vendeur

SBR (Réacteur à alimentation discontinue)

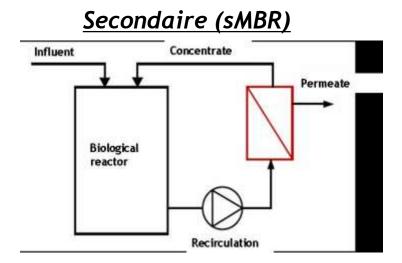
- Les systèmes basés sur la boue activée fonctionnent par une séquence cycles de remplissage.
- □ Les différences principales par rapport aux systèmes conventionnels de boue activée: la réaction et la décantation ont lieu dans le même réacteur.

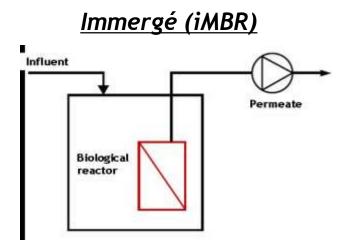
Bénéfices et avantages

- □ Capacité à prendre en charge de larges écarts dans les charges organiques et hydrauliques
- ☐ Moins de terrain requis que les méthodes conventionnelles
- ☐ Moins d'équipement à entretenir/moins d'attention de l'opérateur/ tout automatisé
- □ Du charbon actif en poudre peut être ajouté

SBR (Réacteur à alimentation discontinue)

- ☐ Peut être utilisé pour de nombreuses applications où les eaux usées sont biodégradables:
 - Alimentation, boisson et confiserie
 - Papier, planche et textile
 - Vignobles et brasserie
 - Pétrochimie, raffinerie et peinture


- Effluents prétraités biodégradables
- Électroniques et fabrication
- Pharmacie, parfum et soins personnels


Efficacité de l'élimination de cette technologie par l'industrie

Type d'effluent	BOD (%)	COD (%)	TKN (%)	TP (%)	TSS (%)	TS (%)
Eaux usées de vignoble	97,5	93-96	50	88	n.a.	n.a.
Eaux usées des laiteries	97	93	n.a.	n.a.	97	76
Eaux usées d'abattoir	n.a.	95	92	90	94	n.a.
Eaux usées des porcheries	94,5	88,7	n.a.	61	93,4	n.a.

MBR (Bioréacteur à membrane)

□ Basé sur une combinaison d'un système conventionnel de boue activée avec de membranes de micro ou ultrafiltration pour retenir la biomasse. Configurations:

Bénéfices et avantages

- □ Concentration et petite taille de l'installation
- □ Forte charge effluents/faibles temps de rétention nécessaires
- ☐ Tout automatisé
- □ Qualité de l'effluent constante, quel que soit l'effluent
- □ Pas de risque de perte de biomasse

MBR (Bioréacteur à membrane)

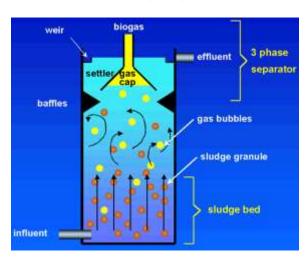
Compatibilité des modules de membrane

Fibre creuse

Plane

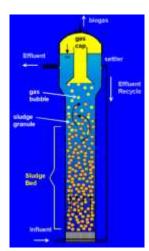
Céramiques

- □ Il produit effectivement un effluent clarifié (sans SS) et désinfecté pouvant être réutilisé dans l'industrie spécifique:


 - Papier, planche et textile
 - Vignobles et brasserie
 - Alimentation, boisson et confiserie
 Effluents prétraités biodégradables
 - Électroniques et fabrication
 - Pharmacie, parfum et soins personnels
- □ Applications de l'eau recyclée: refroidissement, nettoyage ou lors du procédé (par ex. dilutions). Auparavant, il faut vérifier si la qualité de l'eau est conforme aux normes pour l'utilisation spécifique.

Réacteur anaérobie

□ Dans les systèmes anaérobie, de nombreux groupes de bactérie anaérobie « travaillent » ensemble, en l'absence d'oxygène, pour détériorer la matière organique la plus biodégradable présente dans les eaux usées au biogaz, CH4 et CO2, principalement.


Configurations anaérobie:

UASB

- Low h/D
- 0,5-1,5 m/h
- 4-15 kg COD/m3d

EGSB

- h/D = 4-5
- 5-10 m/h
- 5-25 kgCOD/m3d

- \bullet h/D = 4-8
- 5-10 m/h
- 15-30 kgCOD/m3d

Réacteur anaérobie

□ Les industries avec des effluents à forte charge organique (agriculture, pâtes et papier, alimentation, laiteries, boissons, etc.) sont les meilleurs candidats pour cette technologie.

Efficacité de l'élimination de cette technologie par l'industrie

Type d'effluent	COD (%)	m3CH4/kg COD
Transformation des pommes de terre	78-92	n.a.
Confiserie	92,4	n.a.
Sucre	> 90	0,355
Abattoir	80	n.a.
Pâte et papier	80	0,34
Vignoble	90-95	0,4-0,6

Industrie: Laiterie

Lieu: Région de Murcia

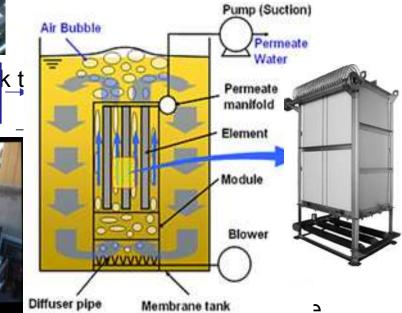
Volume: 80-120 m3 par jour

Calidad del agua:

Paramètre	Eau brute	Limite de décharge
TSS, mg/L	2000	< 500
COD mg/L	8-10.000	< 1000
BOD5, mg/L	5-6.000	< 400
Conductivité mS/cm	4,5	< 5,0
NKT, mg/L	126	<50 (como NT)
Total P, mg/L	43,5	-

Conditions requises: Faible empreinte avec HRT < 1,2 días. Grande variabilité du volume et charge. L'installation doit fonctionner avec l'entretien existant et le personnel de fonctionnement.

Traitement: MBR avec membranes plates sur


le cadre

HOMOGENÉISATION

CONTRÔLE

FLOTTATION

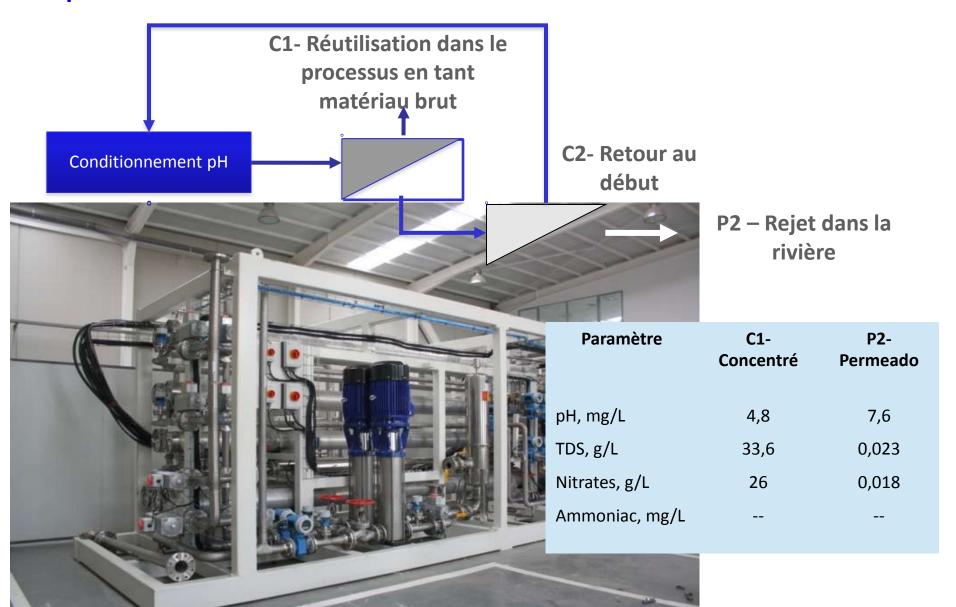
Paramètre	Eau brute	Rejet
		•
TSS, mg/L	2000	< 2
COD mg/L	8-10.000	< 20
BOD5, mg/L	5-6.000	< 5
Conductivité mS/cm	4,5	< 5,5
NKT, mg/L	126	<2
Total P, mg/L	43,5	<1

Nitrochimie

Industrie: Usine de production de nitrate d'ammonium

Lieu: France

Volume: 600 m3/jour


Conditions requises: Fort pourcentage d'élimination des nitrates de rejets dans la rivière. Environnement à risque d'explosion. Grande variabilité du volume et pH. Environnement très agressif à l'intérieur et conditions climatiques extrêmes à l'extérieur

Qualité de l'eau:

Paramètre	Eau brute	Rejet
рН	9	6,5-8,5
Conductivité mS/cm	3,6	<-
Nitrates, mg/L	3000	<25
Ammoniac, mg/L	250	<1

Traitement: Double contrôle pH et osmose inverse en étapes

مع خالص شكري وامتنانى

Thank you for your attention

Merci pour votre attention

Pour des informations ultérieures veuillez contacter: Mécanisme d Soutien a la Gestion Intégrée Durable de l'Eau sur: info@swim-sm.eu ou consultez www.swim-sm.eu