

Two days training on the operation and management of WWTPs

9-10 September, Murcia

**International Recommendations for Wastewater Reuse** 

Presented by: Ana Romero Barahona

## **INDEX**

- 1. Background
- 2. International regulation in the water sector
  - The WHO Guidelines
- 3. Water reuse and regulation in EU
- 4. Examples of water reuse projects
- 5. State of water reuse in Spain

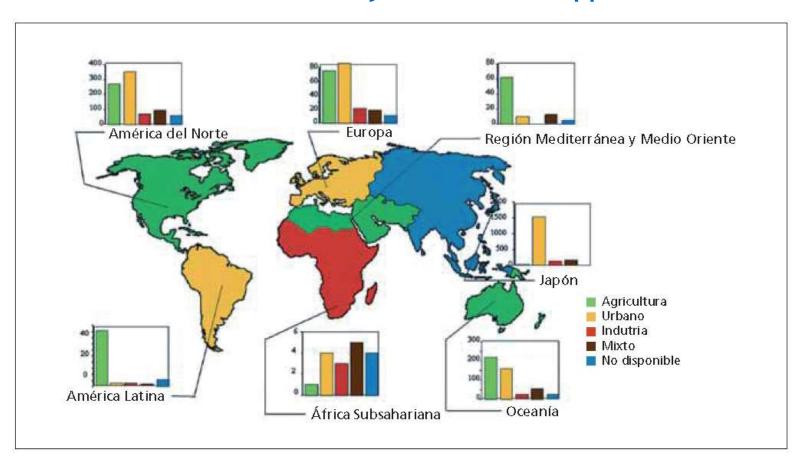
## **BACKGROUND**

- Wastewater use is extensive worldwide, and increasing
- ❖ 10% of the world's population is thought to consume wastewater irrigated foods.
- ❖ 20 million hectares in 50 countries are irrigated with raw or partially treated wastewater.
- Increasingly used for agriculture in both developing and industrialized countries, principal driving forces are:
  - Increasing water scarcity and stress, and degradation of freshwater resources from improper disposal of wastewater.
  - Population increase
  - Growing recognition of the resource value of wastewater and the nutrients it contains.
  - Millennium Development Goals: ensuring environmental sustainability and eliminating poverty and hunger.
- Wastewater can be an excellent resource...

## **GLOBAL WASTEWATER REUSE**

❖ Nowadays are more than 3300 reclaimed water facilities around the world, with different types of treatment precesses for different uses: agriculture, urban services, recreational, industry, indirect potable drinking water production, like recharge of aquifers.

```
√Most of them in Japan (near1800) and US (near 800)
```


- ✓Australia (450)
- √EU (230)
- ✓Mediterranean zone and Middle East (100)
- ✓Latinamerica (50)
- √Sub-Saharian Africa (20)

... and growing!!

Source: FAO 2013

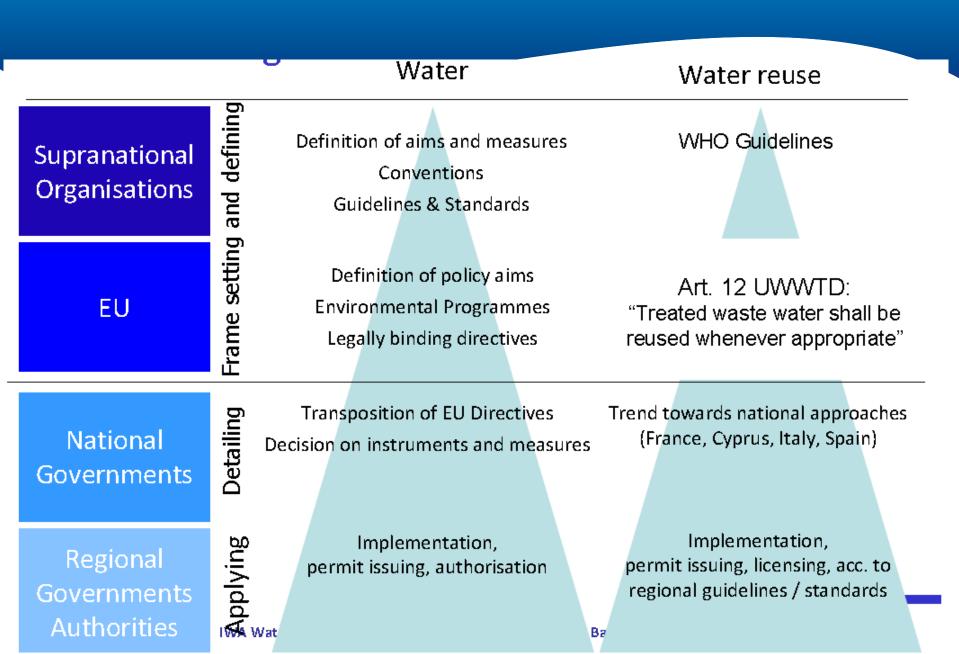
## **GLOBAL WASTEWATER REUSE**

## Reuse wastewater system for field application



Source: FAO 2013

## REGULATION IN WATER SECTOR


Wastewater reuse needs to be perceived as a measure towards three fundamental objectives within a perspective of integrated water resources management:

- **Environmental sustainability** reduction of emission of pollutants and their discharge into receiving water bodies, and the improvement of the quantitative and qualitative status of those water bodies (surface-water, groundwater and coastal waters) and the soils.
- **Economic efficiency** alleviating scarcity by promoting water efficiency, improving conservation, reducing wastage and balancing long term water demand and water supply.
- For some countries, contribution to **food security** growing more food and reducing the need for chemical fertilisers through treated wastewater reuse.

In addition to these objectives, the **public health perspective** should be considered.

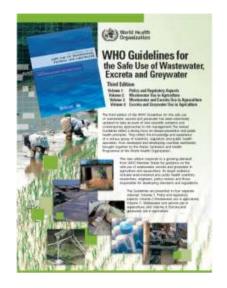
The most common quality standards which are followed are those by World Health Organisation (WHO) the US-EPA standards, and a few others being applied in some countries.

## **REGULATION IN WATER SECTOR**



## WHO GUIDELINES (2006)

Guidelines for the safe use of wastewater, excreta and greywater


# Four volumes to better reach different target audiences

Volume 1: Policy and regulatory aspects

Volume 2: Wastewater use in agriculture

Volume 3: Wastewater and excreta use in aquaculture

Volume 4: Excreta and greywater use in agriculture





http://www.who.int

## WHO GUIDELINES (3<sup>RD</sup> Edition)

## **Objective:**

Maximize the *protection of human health* and the *beneficial use* of important resources

## **Target Audience:**

- Policy makers
- People who develop and enforce standards and regulations
- Environmental and public health scientists
- Educators
- Researchers and engineers



## WHO GUIDELINES (3<sup>RD</sup> Edition)

### What are the Guidelines?

Guidelines provide an *integrated preventive management framework* for maximizing public health and environmental benefits of wastewater use.

The Guidelines are built around a health component and an implementation component. Health protection is dependent on both elements.

### Health components:

Define a level of health protection as health-based targets. Identify health protection measures to achieve the health-based target.

### Implementation components:

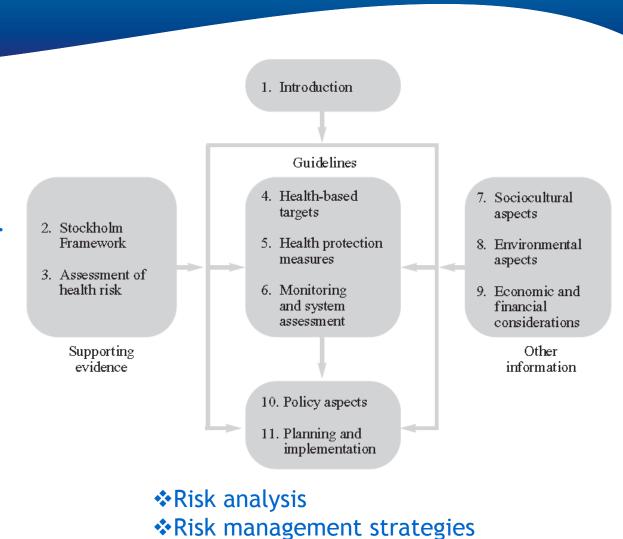
Establish monitoring and system assessment procedures.

Define institutional and oversight responsibilities.

### Requires:

System documentation; and confirmation by independent surveillance.

# WHO GUIDELINES (3<sup>RD</sup> Edition) Vol. 1 - Regulation


Ensuring safety in the use of wastewater through the use of a comprehensive risk assessment and risk management approach that encompasses all steps from waste generation, treatment and use to product use and consumption.

Development of a RISK MANAGEMENT PLAN



# WHO GUIDELINES (3<sup>RD</sup> Edition) Vol. 2 - Wastewater use in agriculture

- Provides information on the assessment and management of risks associated with microbial hazards and toxic chemicals.
- Explains requirements to promote the safe use of water in agriculture (including minimum procedures and specific helth-based targets).
- ❖Stockholm framework for development of waterrelated guidelines and the setting of health based targets



Guideline implementation strategies

**❖**Chemicals

# WHO GUIDELINES (3<sup>RD</sup> Edition) Vol. 2 - Wastewater use in agriculture

### QUALITY CRITERIA TO ACHIEVE HEALTH-BASED TARGETS

### **Exposure scenarios:**

- -Restricted irrigation: use of treated wastewater to grow crops that are not eaten raw by humans
- -Unrestricted irrigation: use of treated wastewater to grow crops that are normally eaten raw
- -Localized irrigation

| Exposure scenario                              | Parameter                                                                                                                                                                       |                                                     |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
|                                                | <i>E. coli/</i> 100 ml                                                                                                                                                          | Helminth eggs/ 10 L                                 |  |  |  |  |
| Restricted irrigation  Unrestricted irrigation | ≤ 100.000 (with control of human exposure) ≤ 10.000 (when children under 15 are exposed) ≤ 1.000.000 (highly mechanized agriculture) ≤ 1.000 (leaf crops) ≤ 10.000 (root crops) | ≤ 10<br>≤ 1 (When children under<br>15 are exposed) |  |  |  |  |
| Lozalized irrigation                           | No recommendations                                                                                                                                                              | ≤ 10 (low growing crops)                            |  |  |  |  |

# WHO GUIDELINES (3<sup>RD</sup> Edition) Vol. 2 - Wastewater use in agriculture

### **POLICY ASPECTS**

#### TO HAVE INTO CONSIDERATION:

### **Policy:**

Are there clear policies on the use of wastewater? Is wastewater use encouraged or discouraged?

### Legislation:

Is the use of wastewater governed in legislation? What are the rights and responsibilities of different stakeholders? Does a defined jurisdiction exist on the use of wastewater?

### **Institutional framework:**

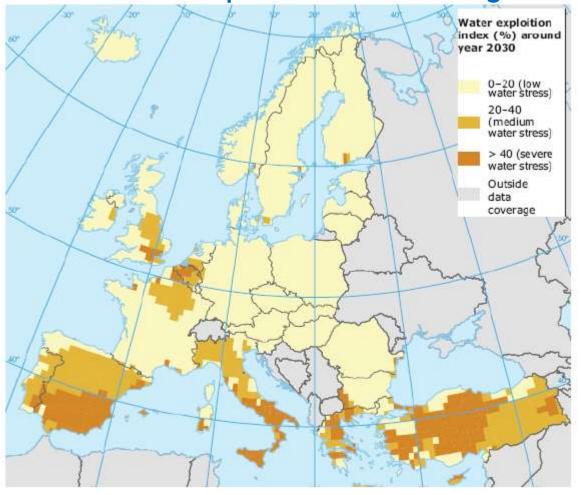
Which ministry/agency, organizations, etc. have the authority to control the use of wastewater at the national level and at the district/community level?

Are the responsibilities of different ministries/agencies clear?

Which ministry/agency is responsible for developing regulations?

Which ministry/agency monitors compliance with regulations?

Which ministry/agency enforces the regulations?


### **Regulations:**

Do regulations exist?

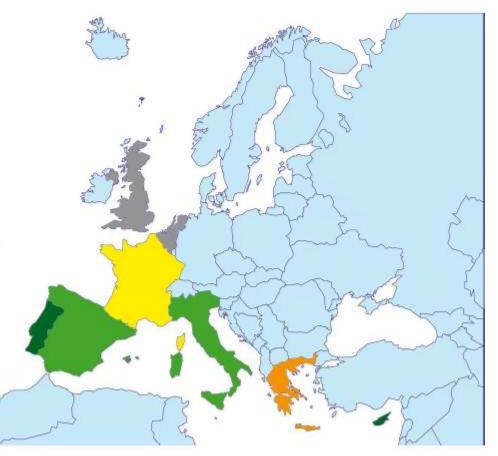
Are the current regulations adequate (protect public health, prevent environmental damage, etc.)? Are the current regulations being implemented?

# STATUS OF WATER REUSE AND REGULATION IN EURES MEMBER STATES

Water stress across Europe → Reuse as a mitigation option



Regions in Europe under water stress (EU EEA, 2007)


# STATUS OF WATER REUSE AND REGULATION IN EURES MEMBER STATES

## Regulatory frame



European Federation of National Associations of Water Services





# STATUS OF WATER REUSE AND REGULATION IN EURES MEMBER STATES

## Regulated uses

| Reuse application                                                         | UK | NL | BE | FR | ES | PT | IT | GR | СҮ |
|---------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|
| Agricultural irrigation (AGR)                                             |    |    |    |    |    |    |    |    |    |
| Industrial uses (IND)                                                     |    |    |    |    |    |    |    |    |    |
| Urban uses (URB)                                                          |    |    |    |    |    |    |    |    |    |
| Irrigation of public greens                                               |    |    |    |    |    |    |    |    |    |
| Domestic uses (performed by private persons in their private homes) (DOM) |    |    |    |    |    |    |    |    |    |
| Recreational uses (REC)                                                   |    |    |    |    |    |    |    |    |    |
| golf course irrigation                                                    |    |    |    |    |    |    |    |    |    |
| Environmental / ecological uses (ECO)                                     |    |    |    |    |    |    |    |    |    |
| Aquifer / Groundwater recharge (AQR) /GWR)                                |    |    |    |    |    |    |    |    |    |
| Direct potable reuse                                                      |    |    |    |    |    |    |    |    |    |

# EXAMPLES OF WATER REUSE PROJECTS CALIFORNIA

### California - Aquifer recharge

- ❖ Since 1976, Water Factory 21 Direct Injection Project (Orange Country, California).
- ❖ Injection of reclaimed water (treatment with reverse osmosis RO-) into the aquifer to prevent salt water intrusion and augmenting potable groundwater supply.

# EXAMPLES OF WATER REUSE PROJECTS: MADRID (SPAIN)

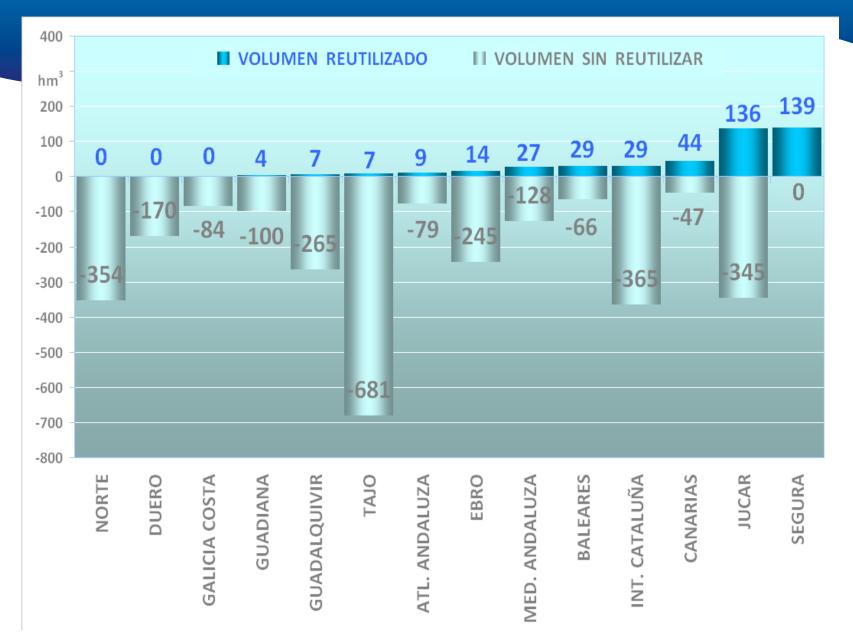
### Madrid - Landscape irrigation and urban non-potable uses

- Municipal network (141 km, 36 deposits)
- Use to irrigate 637 hs of urban parks and landscape areas
- 6 hm3/year
- ♣ Investment: 132 million €
- Potable water savings: 22.7 million m3/year





## WHY WATER REUSE IN SPAIN?


Factors that have had an influence on the development of wastewater reclamation and reuse in Spain over the last 2 decades:

- ❖ Mediterranean and semi-arid climate in the east, south and south-east
- ❖ Increase in water demand domestic, touristic, agricultural
- Periodic droughts
- ❖ Construction of biological wastewater treatment plants throughout Spain, starting by those in coastal touristic communities (Costa Brava, Costa del Sol, Valencia, Murcia, etc.)
- University scholars dealing with the subject of wastewater reclamation and reuse
- Close contact with foreign experiences, mostly from US (California, Florida), both at university and water agency levels

## **SPAIN: REUSE FLOW**

| Organismo de Cuenca             | Caudal<br>disponible<br>(hm³/a) | Caudal de<br>reutilización<br>(hm³/a) | % de<br>reutilización | Caudal (hm3/a)                                                                   |  |  |  |
|---------------------------------|---------------------------------|---------------------------------------|-----------------------|----------------------------------------------------------------------------------|--|--|--|
| CH NORTE                        | 353,89                          | 0,00                                  | 0,00%                 | Disponible                                                                       |  |  |  |
| CH DUERO                        | 170,18                          | 0,00                                  | 0,00%                 | 3000 Reutilizado                                                                 |  |  |  |
| CH TAJO                         | 688,37                          | 7,32                                  | 1,06%                 | 2000                                                                             |  |  |  |
| CH GUADIANA                     | 103,57                          | 3,63                                  | 3,51%                 |                                                                                  |  |  |  |
| CH GUADALQUIVIR                 | 272,04                          | 6,57                                  | 2,42%                 | 1000                                                                             |  |  |  |
| CH SEGURA                       | 139,20                          | 139,20                                | 100,00%               | 0                                                                                |  |  |  |
| CH JUCAR                        | 480,99                          | 135,89                                | 28,25%                |                                                                                  |  |  |  |
| CH EBRO                         | 259,18                          | 14,48                                 | 5,59%                 | 13%                                                                              |  |  |  |
| GALICIA COSTA                   | 84,42                           | 0,00                                  | 0,00%                 |                                                                                  |  |  |  |
| CUENCA ATLANTICA<br>ANDALUZA    | 88,10                           | 9,38                                  | 10,65%                |                                                                                  |  |  |  |
| CUENCA MEDITERRÁ.<br>ANDALUZĄ   | 155,02                          | 27,35                                 | 17,64%                |                                                                                  |  |  |  |
| CUENCAS INTERNAS<br>DE CATALUÑA | 393,70                          | 28,75                                 | 7,30%                 | Datos correspondientes a concesiones                                             |  |  |  |
| BALEARES                        | 94,56                           | 28,66                                 | 30,30%                | Extracto de información proveniente del<br>CEDEX y las distintas Confederaciones |  |  |  |
| CANARIAS                        | 91,91                           | 44,43                                 | 48,34%                | Hidrográficas y Organismos de Cuenca                                             |  |  |  |
| TOTAL NACIONAL                  | 3.375,16                        | 447,34                                | 13,25%                |                                                                                  |  |  |  |

## **SPAIN: REUSE FLOW**



## **SPAIN: CONCLUSION**

- ❖ The future of water reuse is essentially focused on the coastal areas of the Mediterranean and South-Athlantic Arc, and the Balearic and Canary Island where it is a strategic non-conventional resource.
- Majority use in irrigation
- ❖ Not an important increase in quantity, but permit a better management.

# مع خالص شكري وامتناني

# Thank you for your attention

# Merci pour votre attention



For additional information please contact:

Sustainable Water Integrated Management - Support Mechanism: <u>info@swim-sm.eu</u>

Website: www.swim-sm.eu