Sustainable Water Integrated Management (SWIM) -Support Mechanism

Project funded by the European Union

TWO DAYS TRAINING ON THE OPERATION AND MANAGEMENT OF WWTPS

9-10 September, Murcia

Conventional Wastewater Treatment Design

Presented by: Antonio Gomez Lopez

- Basic principles of WWTP design.
- General issues in WWTP design.
- Conventional WWTP design.
 - ✓ Pretreatment.
 - ✓ Primary treatment.
 - ✓ Secondary treatment.
 - ✓ Tertiary treatment.
- References

Basic principles of WWTP design

- Wastewater characteristics.
- Treated water quality requirements.
- Geographical constraints.
- Social and environmental constraints.
- Economic constraints.
- > Available technologies.

Wastewater characteristics

- Quantitative characteristics.
 - Design flowrates. Average, peak and maximum flowrate in rain periods.
 - Seasonal variation of flowrates.
 - ✓ Estimated future flows.
- > Qualitative characteristics.
 - ✓ BOD₅, COD, TSS.
 - ✓ Ph, alkalinity.
 - ✓ N, P.

Treated water quality requirements

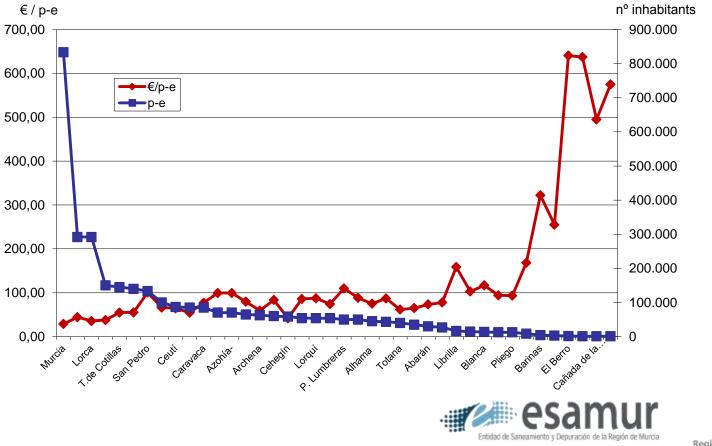
- Final use of treated water.
- Characteristics of environment.
- Legal constraints.

Geographical constraints

- Land availability.
- Relative location of wastewater sources.
- Climatic constraints.

Social and environmental constraints

- Proximity to residential areas.
- Measures in order to reduce adverse effects on the environment.
 - ✓ Noise.
 - ✓ Odors.
- Landscape integration.
- Legal constraints.


Economic constraints

- Construction costs.
- > Operating and maintenance costs.
 - ✓ Annual O&M cost.
 - ✓ Future replacement of equipment.
 - ✓ Implement systems to guarantee income for future operation and maintenance.

Conventional WWTP Construction Costs

Región de Murcia Consejería de Agricultura y Agua

Available technologies

- Evaluating unit operations and processes.
- Selecting appropriate technologies.
 - ✓ Personnel requirements.
 - ✓ Operation complexity.

General issues in WWTP design

- Construction.
- Operation and maintenance.
- Safety of staff.
- > Other issues.

General issues in WWTP design

Construction:

- ✓ Mechanical resistance.
- Impermeability of elements.
- ✓ Structural stability.
- Materials resistant to corrosive environments.

<u>General issues in WWTP design</u>

- Operation and maintenance:
 - ✓ Several parallel facilities for each process.
 - ✓ Inlet and outlet gates or valves to remove elements from service for maintenance.
 - \checkmark Dewatering of tanks and other elements.
 - Interchangeability of equipment.
 - Measurement and registration of flowrates.

General issues in WWTP design

Safety of staff.

- \checkmark Avoid, if possible, confined spaces.
- ✓ Gas monitoring equipment.
- ✓ Ventilation.
- ✓ Fences and walls.

General issues in WWTP design

- > Other issues.
 - ✓ Odor treatment systems.
 - ✓ Noise reduction.
 - ✓ Energy efficiency.
 - ✓ Emergency electric power generation.
 - ✓ Future treatment needs.

Conventional WWTP design

- Basic treatments.
 - ✓ Wastewater treatments.
 - ✓ Sludge treatments.
 - ✓ Gas treatments.

Wastewater treatments design

- > Main unit processes in wastewater treatment.
 - ✓ Pretreatment.
 - Primary treatment. (Physical Chemical treatment)
 - Secondary treatment. (Biological treatment)
 - Advanced secondary treatment. (Nutrient removal)
 - ✓ Tertiary treatment. (Water reuse)

Pretreatment

- Removal of coarse solids, grit and grease, that could damage sub-sequent process equipment, by physical and mechanical means.
- Design peak flowrate: 5 x Q_{average}
- Usually need odor treatment.
- Usual unit processes:
 - ✓ Large solid removal.
 - \checkmark Screening.
 - ✓ Grit and grease removal.
 - ✓ Flow equalization.

Large solid removal

- Bottom sloped pit for collecting large solids, equipped with mechanical removal thereof.
- Design parameter:
 - ✓ Overflow rate : $\leq 300m^3/m^2 h (Q_{peak})$
 - ✓ Detention time: 0,5-1,0 min (Q_{peak})
 - ✓ Typical Depth: > 2 m

- Retain solids found in the influent wastewater by screens.
- Coarse Screens.
 - ✓ Bar racks \rightarrow clear opening from 20 to 60 mm
 - ✓ Bar screens \rightarrow clear opening from 6 to 12 mm
- Fine Screens.
 - ✓ Fine screens \rightarrow clear opening from 0,25 to 3 mm

Coarse Screens

- ➤ Hand-Cleaned coarse screens → Small WWTP
- Mechanically Cleaned coarse screens.
- Several parallel devices or bypass channel to make maintenance possible.
- Design parameter:
 - ✓ Approach velocity →

✓ Velocity through screen →

- > 0,4 m/s (Q_{minimum})
- > 0,9 m/s (Q_{peak})
 - < 1,0 m/s (Q_{minimum})
 - < 1,4 m/s (Q_{peak})

Coarse Screens

- > Design parameter :
 - ✓ Allowable headloss
 (30 % clogged) →
 - Screen channel width:

$$W = \frac{Q}{V \times H} \times \frac{E + e}{E} \times C$$

0,1 a 0,2 m (Bar racks) 0,2 a 0,4 m (Bar screens)

- W: Screen channel width (m)
- Q: Peak flowrate through channel (m³/s)
- V: Peak velocity through screen (m/s)
- H: Water level upstream screen (m)
- e: Bar size width (m)
- E: Clear spacing between bars (m)

C: Coefficient to account the degree of clogging, typically 1,3.

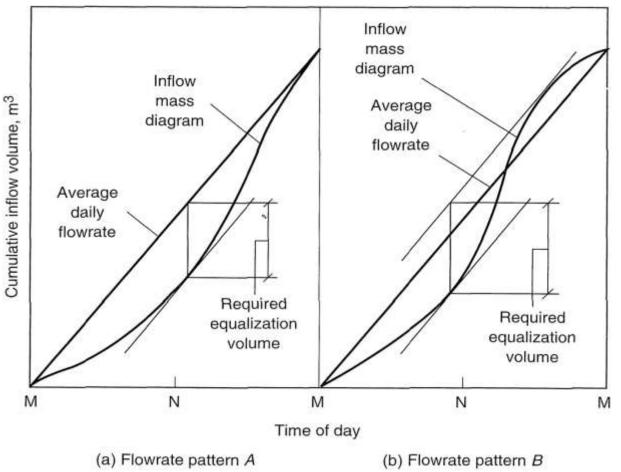
- Removal of BOD₅ between 10 15 %
- Self-washing continuous fine screen.
 - ✓ Total headloss → 0,1 a 0,4 m
- Step screens.
 - ✓ Total headloss \rightarrow from 0,2 to 0,5 m
- Rotary drum screens.
 - ✓ Total headloss \rightarrow to 2 m
- Wedge section screens.
 - ✓ Total headloss \rightarrow 0,2 a 0,4 m

Grit and grease removal

- Remove grit (sand, gravel, cinder,...), fat, grease and other floating material.
- Usually grit and grease are removed at the same facility, but these process can be designed as independent facilities.
- Design parameter (Aerated G&G removal):
 - ✓ Overflow rate: < $35 \text{ m}^3/\text{m}^2 \text{ h} (\text{Q}_{\text{peak}})$
 - ✓ Horizontal velocity: < 0,15 m/sec</p>
 - ✓ Detention time: 10-15 min (Q_{average})
 - ✓ Length-to-Width ratio: 3:1 5:1 (4:1, typically)

Grit and grease removal

- Design parameter (Aerated G&G removal):
 - ✓ Width-to-depth ratio: 1:1 5:1. (1,5-1 typically)
 - ✓ Depth: 2-5 meters
 - ✓ Estimated air supply: 5-8 m³/h
 - ✓ Organic material in the grit: < 5%
- Complementary treatment :
 - ✓ Grit Classifier.
 - ✓ Grease concentrator.



Flow equalization

- Damping of flowrate variations to achieve a constant or nearly constant flowrate.
- In-Line or Off-Line.
- The volume required is determined by using an inflow cumulative volume diagram.
- Design issues:
 - ✓ Geometry should be arranged to minimize short circuits.
 - \checkmark Generally requires proper mixing and aeration.
 - \checkmark Facilities for flushing solids and grease accumulated on the tank.
 - \checkmark Removal of floating material.
 - ✓ Separate odor control facilities.

Schematic mass diagrams for the determination of the required equalization basin storage volume for two typical flowrate patterns.

Primary Treatment

- Reduce the suspend solids content by sedimentation with optional physical-chemical treatment.
- Efficiency with respect to the removal of BOD and TSS varies with type of treatment.
- Design peak flowrate: 2,5 x Q_{average}
- Usual unit processes:
 - ✓ Solid-liquid separation \rightarrow Primary Sedimentation
 - \checkmark Complementary processes \rightarrow Coagulation-Flocculation

Primary Sedimentation

- Remove settleable solids and floating material by gravity separation.
- BOD and T.S.S. removal:
 - ✓ $BOD_5 \rightarrow 30 35 \%$
 - ✓ T.S.S. \rightarrow 60 65 %
- Types of primary sedimentation tanks:
 - Conventional clarifiers:
 - Circular.
 - Rectangular.
 - ✓ Stacked clarifiers.
 - ✓ Lamella plate clarifiers.

Primary Sedimentation

- Main design parameters:

 - Detention time \rightarrow \checkmark
 - Weir loading \checkmark \rightarrow
 - \checkmark Sidewall depth \rightarrow
 - Bottom slope \rightarrow \checkmark

- Overflow rate \rightarrow < 1,3 m/h (Q_{average}) < 2,5 m/h (Q_{peak})
 - > 2 h (Q_{average}) > 1 h (Q_{peak})
 - $< 40 \text{ m}^3/\text{h/m}$
 - 2 3,5 m
 - Circular 5 10 %
 - Rectangular 1 2 %

Coagulation - Flocculation

- Improve performance of primary sedimentation increasing removal of T.S.S. and BOD.
- Coagulation.
 - ✓ The chemical destabilization of colloids to bring about their aggregation during flocculation.
- Flocculation.
 - ✓ Form aggregates or flocs from finely divided particles and from chemical destabilized particles that can be removed readily by sedimentation.
- BOD and T.S.S. removal:
 - ✓ $BOD_5 \rightarrow 50 75 \%$
 - ✓ T.S.S. \rightarrow 65 90 %

Coagulation - Flocculation

- Design parameters:
 - ✓ Detention time mixing and flocculation \rightarrow > 15 min.
 - ✓ Tip speed flocculation \rightarrow 0,6 1,5 m/s
- Chemical dosage for coagulation:

<u>Chemical</u>	Dosage range (mg/l)
Lime [Ca(OH) ₂]	150 - 500
Aluminum sulfate [Al ₂ (SO ₄) ₃]	75 - 250
Ferric chloride [FeCl ₃]	35 - 150
Cationic polymers	2 - 5
Anionic polymers and nonionic	0,25 - 1

ntidad de Saneamiento y Deouración de la Región de Murc

Secondary treatment

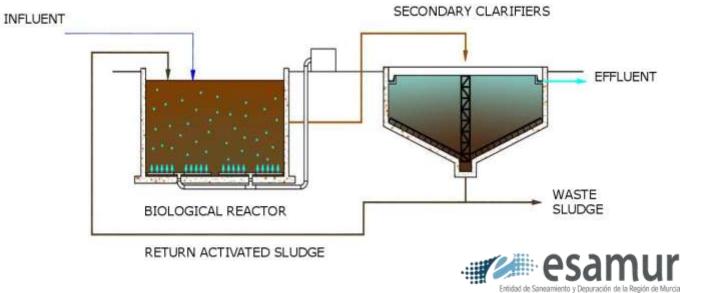
- Transform or remove dissolved and particulate biodegradable constituents, colloidal solids or nutrients by biological means.
- Many processes in a WWTP are designed to mimic the natural treatment processes that occur in the natural water bodies or ground.
- > Types of biological wastewater treatment:
 - Attached-growth processes.
 - \checkmark Suspend-growth processes.
 - ✓ Combined processes.
 - ✓ Lagoon processes.

Conventional activated-sludge

The most common suspended growth process used for municipal wastewater treatment.

Characteristics:

- \checkmark Reliable.
- \checkmark Flexible.
- High performance. \checkmark
- Relatively high operating and maintenance cost. \checkmark
- Multiples types of processes:
 - Aerobic, anaerobic, anoxic processes. \checkmark
 - \checkmark Carbonaceous BOD removal, nitrification, denitrification, phosphorous removal.



Región de Murcia Consejería de Agricultura y Agua

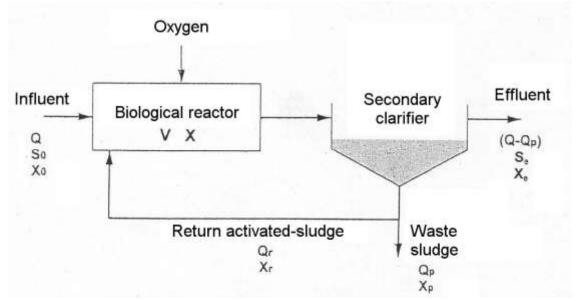
Conventional activated-sludge

- Basic operations:
 - ✓ Biological degradation.
 - ✓ Liquid solids separation.
 - ✓ Return of activated sludge.

Región de Muncia Consejería de Agricultura y Agua

Biological degradation

Microorganisms consume substrate (carbon and energy sources) and nutrients to carry out oxidation-reduction reactions to produce new cells.


General considerations:

- Substrate characteristics.
- ✓ Nutrients.
- ✓ Oxygen transfer requirements.
- \checkmark Temperature, ph y salinity.
- ✓ Toxic or inhibitory substances.

Activated-sludge design

Q = Secondary influent flowrate (m³/day) So = [BOD₅] Secondary influent (mg/l) Xo = [TSS] Secondary influent (mg/l) Se = [BOD₅] Effluent (mg/l) Xe = [TSS] Effluent (mg/l) V = Biological reactor volume (m³) X = [VSS] Mixed-liquor (mg/l) Qr = Return sludge flowrate (m³/h) Xr = [TSS] Return sludge (mg/l) Qp = Waste sludge flowrate (m³/h) Xp = [TSS] Waste sludge (mg/l) (Xp = Xr)

Activated-sludge design

- Design parameters:
 - ✓ Food to microorganism ratio (F/M) → $F/_{M} = Q \times S_{o}/V \times X$
 - $\checkmark \quad \text{Cell resident time } (\theta_{c}) \qquad \qquad \Rightarrow \quad \theta_{c} = V \times X / Q_{p} \times X_{r}$
 - ✓ Detention time (RT) → RT = V/Q
 - ✓ Performance (P)

$$\Rightarrow P = \left(S_o - S_e\right) / S_o$$

Activated-sludge design

- Volume reactor.
 - \checkmark Using cell resident time .
 - ✓ Using Food to microorganism ratio.
 - ✓ Mixed Liquor Suspended Solids [MLSS]:
 - Conventional \rightarrow 2.500-3.500 mg/l
 - Extended aeration \rightarrow 3.000-5.000 mg/l
- Oxygen requirements.
 - Carbonaceous material oxidation.
 - ✓ Endogenous Respiration.
 - ✓ Nitrogenous material oxidation.

Nitrification - Denitrification

- Nitrification.
 - ✓ Two-step biological process in which ammonia (NH₄-N) is oxidized to nitrite (NO₂-N) and nitrite is oxidized to nitrate (NO₃-N).
 - The process needs much longer hydraulic and solid retention time.
 - Requires a higher amount of oxygen.
 - Ph (7,2 8,5) and alkalinity (> 40 g CO₃Ca/l).
- Denitrification.
 - Biological reduction of nitrate to nitric oxide, nitrous oxide, and nitrogen gas.
 - Requires a carbon source (3 g BOD/g N-NO₃).
 - Requires anoxic conditions.
 - Ph (7 8).

Design of physical facilities for A-S processes

- Rectangular shape left open to the atmosphere.
- Geometry should be arranged to avoid short circuits.
- Depth of wastewater between 4 9 m.
- Freeboard >0,5 m.
- Shall permit the peak hourly flowrate to be carried with any single aeration tank out of service.
- Equalizing the distribution of flow and air to aeration tanks.
- Froth control system.

Liquid - solids separation

- Secondary clarification.
 - Settle the biological floc to produce water containing low levels of organic material and suspended matter.
 - \checkmark Thicken sludge to return to aeration tank.
 - ✓ Limit sludge detention time to prevent uncontrolled denitrification or anaerobic conditions.
- Settling tanks types.
 - \checkmark Circular tanks with bottom scrapper system.
 - \checkmark Circular tanks with sludge suction system.
 - \checkmark Rectangular tanks with scrapper.
 - Lamella plate clarifiers.

Secondary clarification

- Main design parameters:
 - ✓ Overflow rate (m³/m² h)
 - ✓ Solids loading (kg S.S./m² h)
 - ✓ Weir loading (m³/m h)
 - ✓ Sidewall depth.
 - ✓ Sludge volume index.
- Other design issues:
 - Flow distribution.
 - ✓ Scum removal.

Return of activated-sludge and Sludge wasting

- Return of activated sludge.
 - Maintain a sufficient concentration of activated sludge in the aeration tank.
 - ✓ Return sludge concentration \rightarrow 6 8 g/l (scrappers)

5 - 6 g/l (suction)

✓ Return sludge pumping → 75 - 100 % (conventional)

100 -150 % (extended aeration)

- Sludge wasting.
 - Remove the excess activated sludge produced each day to sludge treatment.

Design parameters summary

Aeration tank		Conventional	Extended aeration
Food to microorganism ratio	(kg BOD ₅ day/ kg MLSS day)	0,2 - 0,4	< 0,1
Cell resident time	(kg MLSS / kg waste sludge day)	4 - 10	10 - 30
MLSS concentration	(mg/l)	2.500 - 3.500	3.000 - 5.000
Detention time	(h)	3 - 8	18 - 36
Return of activated sludge		Conventional	Extended aeration
Return sludge pumping rate	(% Qr / Q)	75 - 100	100 - 150

Entidad de Saneamiento y Depuración de la Resión de Murcia

Región de Muncia Consejería de Agricultura y Agua

Design parameters summary

Secondary Clarification		Conventional	Extended aeration	
Overflow rate	Qaverage (m³/m²⋅h)	≤ 0,7	≤ 0,5	
	Qpeak (m³/m²⋅h)	≤ 1,4	≤ 0,9	
Solids loading	Qaverage (kg SS/m²⋅h)	≤ 2,4	≤ 1,8	
	Qpeak (kg SS/m²⋅h)	≤4,5	≤ 3,2	
Weir loading	Qaverage (m³/m·h)		≤6	
	a Qpeak (m³/m⋅h)	:	≤ 12	
Sidewall depth	(m)	>	> 3,0	
Sludge volume index		100 - 150	75 - 100	

Tertiary treatment

- Additional treatment needed to remove suspended, colloidal and dissolved constituents remaining after conventional secondary treatment.
- Usually to meet more stringent discharge and reuse requirements and wastewater disinfection.
- Usual unit processes:
 - ✓ Flow equalization
 - Coagulation Flocculation
 - ✓ Sedimentation (Lamellar)
 - ✓ Filtration
 - Cl₂ or UV disinfection

Tertiary physical-chemical treatments

- Flow equalization.
 - Damping of flowrate variations to achieve a constant flowrate.
 - Cover equalization tank to avoid algae proliferation with sunlight.
- Coagulation Flocculation.
 - \checkmark Similar than primary treatment.
- Lamellar sedimentation.
 - ✓ Conventional lamellar overflow rate \rightarrow < 10 m/h
 - ✓ Ballasted lamellar overflow rate \rightarrow < 40 m/d

<u>Filtration</u>

- Removal of particulate material suspended in a liquid by passing the liquid through a filter medium.
- Depth Filtration .
 - \checkmark Filter bed comprised of a granular medium.
 - ✓ Design data:
 - Sand Depth \rightarrow 900 1.000 (typical 1.200 mm)
 - Filtration rate \rightarrow 80 400 l/m² min (typical 200 l/m² min)
 - Backwash rates \rightarrow 1750 1500 m³/m² h (Air)
 - 25 50 m³/m² h (Water)
 - Allowable headloss.
- Surface filtration.
 - \checkmark Mechanical sieving by passing the liquid through a thin septum.
 - Design data by manufacturer.

Región de Murcia Consejería de Agricultura y Agua

Disinfection

Partial destruction of disease-causing organisms.

- Chemical agents.
 - Chlorine and its compounds (typical), bromine, iodine, ozone and others.
 - ✓ Design chlorine disinfection data: ¹
 - Chlorine dose \rightarrow 8 16 mg/l
 - Contact time → ≥ 30 min.
 ¹ Filtered nitrified effluent and total coliform disinfection requirement of ≤ 2,2 MPN/100 ml.

Physical agents.

- Light (UV radiation), heat and sound waves.
- ✓ UV disinfection system configurations:
 - Open and close channel system.
 - Design data by manufacturer.²
 ² Pay attention to UV transmittance.

- ATV-DVWK- A131 E (2000). Dimensionamiento de plantas de fangos activados de una etapa.
- J. A. CORTACANS (2010). Fangos activados. Eliminación de nutrientes.
 2ª edición.
- DEGREMONT (1991). Water treatment handbook. Degremont.
- > A. HERNÁNDEZ (1999). Depuración de aguas residuales
- C.P. LESLIE-G.T. DAIGGER-H.C. LIM (1999). Biological Wastewater Treatment
- > METCALF-EDDY (2004). Wastewater Engineering. Treatment and Reuse.

Thank you for your attention

Merci pour votre attention

For additional information please contact: Sustainable Water Integrated Management - Support Mechanism: <u>info@swim-sm.eu</u> Website: <u>www.swim-sm.eu</u>