

The EU funded SWIM-SM: developing capacity for Sustainable and Integrated Wastewater Treatment and Reuse

Online Course on Natural Treatment Systems: Organic Matter Removal

Organic Matter Removal

Activated Sludge

Most intensively studied Microbial process descriptions applicable for other treatment systems (ponds etc.)

Wastewater composition

- Wastewater comprises both <u>organic</u> and <u>inorganic</u> materials (measured in influent).
- These are removed in by:

BIODEGRADABLE

- Biological conversion by m.o.
- Phase transformations (physicochemical and biological (dissolved → solid; dissolved → gas↑)

BIODEGRADABLE AND/OR CHEMICAL REACTIVE

Solid-liquid separation SETTLEABLE or SUSPENDED

DISCUSSION:

• How do you expect that the different organic constituents (particulate, colloidal and dissolved) are removed as a function of their (bio-) degradability in a wastewater treatment plant?

Transformations

- So irrespective of treating raw or settled WW:
 - Particulates (settleable and non-settleable/ colloidals) get enmeshed in the sludge mass
 - Biodegradable organics (settleable, nonsettleable, dissolved) become biomass (able to settle)
 - Unbiodegradable dissolved organics escape with effluent.
- Some sludge mass is daily harvested from reactor to control the mass in reactor (in case of e.g. activated sludge system).

Biological behaviour

This involves two metabolic processes:

- (1) Organism growth utilization of biodegradable organics for metabolism:
 - Anabolism material for new cell mass
 - Catabolism generation of energy to make new cell mass.
- (2) Organism "Death"/ endogenous respiration loss of organism.

Biological behaviour

- Catabolism can be via fermentation and/or respiration
- Fermentation: organic compound is e-acceptor
- Respiration: O2 is electron acceptor

Biological behaviour

Organism metabolism (growth and endogenous respiration) involves two aspects:

- (1) <u>Stoichiometry</u> quantitative relationship between bioprocess reactants (e.g. organics) and products (e.g. biomass formed, oxygen consumed).
- (2) Kinetics rate at which bioprocesses take place.

Growth and endogenous resp. stoichiometry

 Y_{COD} = COD of biomass formed/COD utilized = 0.66

$$Y_H = Y_{COD}/f_{cv} = 0.66/1.48 = 0.45 \text{ mgVSS/mgCOD}$$

COD mass balance! – fundamental to all models

Growth and endogenous resp. stoichiometry

Growth (metabolism) transforms biodegradable COD into OHO biomass:

- Anabolism: Y_{COD} (=0.66; 2/3^{rds}) of the e⁻ (COD) in influent biodegradable organics become biomass
- <u>Catabolism</u>: 1-Y_{COD} (=0.34;1/3rd) of the e⁻ (COD) in influent biodeg. organics are passed to oxygen generating heat (loss).

Growth and endogenous resp. kinetics

- Growth follows Monod equation
- •End. Resp. is first order

Heterotrophic growth:

$$r_{het.gr.} = \mu_{Het.} \frac{S_S}{K_S + S_S} \frac{S_O}{K_O + S_O} X_{Het.}$$

Endogenous respiration:

$$r = b X_B$$

Growth in aerated reactor fed with WW

- All biodegradable organics are used for growth:
 - Soluble biodegradable organics are readily utilized even at HRT 6-24h.
 - Particulate biodegradable organics are slowly degraded but they get enmeshed in sludge for at least one SRT (min. 4-5 days).

Growth in aerated reactor fed with WW

- With the growth process complete, its kinetics can be ignored!
- ... and only the stoichiometry of the growth process needs to be considered.

Endogenous process in aerated reactor fed with WW

- Endogenous process transforms biomass biodegradable organics into:
 - unbiodegradable endogenous residue (which accumulates in the reactor as VSS).
 - requires additional oxygen consumption.
- ... But, it is very slow and does not reach completion (even at very long SRT)... its stoichiometry and kinetics are needed.

Solids in aerated reactor fed with WW reactor

VSS = X_V (ORGANICS)

TSS

X_{BH}: OHO Biomass

X_E: OHO's endogenous residue

X_I: Unbiodegradable particulate COD

 $ISS = X_{IO}$ (INORGANICS)

Reactor VSS

$$X_v = X_{BH} + X_{EH} + X_{I} [mgVSS/L]$$

 The VSS mass in the reactor (MX_v) is the VSS concentration (X_v) x reactor volume (V_p):

$$MX_v = X_{BH} V_p + X_{EH} V_p + X_I V_p$$

$$MX_v = X_v V_p \text{ [kgVSS]}$$

Unbiodegradable particulate organics

- At steady state, MX_I increases linearly with sludge age (R_s).
- MXI at 20 d ~ double than at 10 d.

Active biomass

 MX_{BH} in reactor increases with sludge age (R_s) but increase gets smaller as sludge age gets longer due to longer duration of endogenous process.

Endogenous residue

 MX_{EH} increases with sludge age (R_s) but increase gets larger as sludge age gets longer due to longer duration of endogenous process.

Reactor VSS

- For raw WW:
- At 10d sludge age, VSS mass in reactor is ~2.7 kgVSS per kgCOD load in reactor,
- At 20d, ~4.5 kgVSS/kgCOD load per day.

Reactor ISS

- VSS is organic part of suspended solids in reactor.
- TSS is total and includes inorganic suspended solids (ISS).
- Reactor ISS arises from influent ISS accumulation and from ISS in biomass.

Reactor ISS

 If influent ISS is not known, can choose a VSS/TSS ratio (f_i) for the AS:

$$f_i = 0.75$$
- 0.85 for raw wastewater $f_i = 0.80$ - 0.88 for settled wastewater.

So reactor TSS can be calculated as:

$$MX_t = MX_v/f_i$$
 [kgTSS] and,

$$MX_{lo} = MX_{t} - MX_{v}$$
 [kgTSS]

Reactor solids

TSS

 $VSS = MX_V$ (ORGANICS)

MX_{BH}: OHO Biomass

MX_E: OHO's endogenous residue

MX_I: Unbiodegradable particulate COD

 $ISS = MX_{IO}$ (INORGANICS)

Reactor solids

- For raw WW:
- At 10d sludge age, TSS mass in reactor is ~3.5 kgTSS per kgCOD load in reactor,
- At 20d, ~6.0
 kgTSS/kgCOD load per day.

Oxygen demand

Recall that oxygen is required for two bio-processes:

- (1) Growth and
- (2) Endogenous Respiration

Oxygen for growth

Organics ethrough
catabolism
passed to
oxygen.

Oxygen for endogenous respiration

e⁻ of biomass (X_{BH}) biodeg. organics passed to oxygen – catabolic energy generation.

Oxygen demand

Note: Oxygen demand for organics removal increases as sludge age increases because endogenous process continues further the longer the sludge age.

Values for constants

Stoichiometric:

$$Y_{Hv}$$
 = OHO yield = 0.45 mgVSS/mgCOD
 f_{cv} = COD/VSS = 1.48 mgCOD/mgVSS
 f = OHO unbiodegradable fraction = 0.20

Kinetics:

only the endogenous rate $b_{HT} = b_{H20}(1.029)^{(T-20)} / d$; $b_{H20} = 0.24 / d$ (valid between 12 and 30°C)

