

The EU funded SWIM-SM: developing capacity for Sustainable and Integrated Wastewater Treatment and Reuse

Online Course on Natural Treatment Systems: Phosphorus Removal

Phosphorus removal

SWIM OLC on Natural Treatment Systems

Introduction: why P removal?

- Nitrogen (N) and phosphorus (P) discharges in water bodies lead to eutrophication:
 - excessive algae and plant growth
 - poor fish habitat
 - algal toxins production
 - more complex water treatment systems needed
 - reduced recreation uses
 - reduced (fresh) water availability

Eutrophication:

Water hyacinth bloom near Vancouver, Canada

Why P vs N removal?

- N removal can reduce eutrophication but if N becomes limiting, cyanobacteria can fix dinitrogen gas (N₂) from the air (containing ~ 20% O₂, ~ 80% N₂)
- Phosphorus removal is more efficient since P can only come from upstream
- Thus, P is the « key » nutrient to remove

phosphorus recycling

http://www.rainharvest.co.za/2010/07/peak-phosphorus-what-does-this-mean/

P-removal in natural systems

- Adsorption to sediment/ soil
- Plant uptake
- Algae uptake
- Bacteria uptake
- Photosynthesis leads to an increase in pH, if alkalinity is low, and this favours phosphorus precipitation as calcium phosphate

Maybe better: re-use nutrients in agriculture

How much P removal by primary settling and conventional AS?

typical P removal efficiency

•	primary settling	15-20%
•	conventional activated sludge	30-40%
•	enhanced biological phosphorus	
removal (EBPR) activated sludge		90-99%

BPR – Advantages and Limitations

- Advantages
 - no chemical addition
 - no chemical sludge produced
 - more « ecological »
 - more economical
 - potential P-recovery
 - High efficiency (P_{eff} < 1 mgP/L)
- Limitations
 - Relatively complex process (greater operator expertise required)
 - risks of P release during sludge treatment

Principle of BPR

- BPR = accumulation of P beyond metabolic requirements
 - as intracellular polyphosphates reserves in phosphorus accumulating organisms (PAOs)
- Essential requirements to achieve BPR
 - exposure of PAOs to alternating anaerobic (AN) & aerobic (OX) (or anoxic) conditions
 - VFAs storage by PAOs in the AN reactor

BPR – Definitions of reactor conditions

 Conditions for a reactor (engineering definitions)

• AN: anaerobic: neither O₂ nor NO₃

• AX: anoxic: without O_2 , with NO_3^-

OX: aerobic with O₂

BPR observations

Polyphosphate-accumulating organisms (PAO)

VFA: Volatile fatty acids such as acetate (HAc) and propionate (HPr)

S_{F,inf}: Fermentable organics present in the influent.

Polyphosphate-accumulating organisms (PAO)

How much P in PAOs?

Maximum P content of PAOs
= 0.38 g P/g AVSS (where AVSS = active VSS)

$$f_{VT.PAO} = 0.48 \text{ g AVSS/g TSS} \rightarrow 0.18 \text{ g P/g TSS}$$

 P content of PAOs (g P/g VSS) depends on the proportion of influent biodegradable COD (COD_b) stored by PAOs

Biological mechanisms of BPR

- PAO are heterotrophic organisms with unbalanced growth:
 - Uptake carbon source under anaerobic conditions
 - But grow under aerobic conditions
- no pure cultures of PAOs achieved yet!
- from molecular techniques:
 - NOT Acinetobacter which was first thought to be a PAO
 - but Candidatus Accumulibacter Phosphatis
- 3 intracellular storage compounds involved:
 - PP or poly-P (polyphosphates)
 - PHA (poly-β-hydroxyalkanoates)
 - PHB (poly-β-hydroxybutyrate) +
 - PHV (poly-β-hydroxyvalerate)....
 - Among others...
 - GLY or glycogen (a polymer of glucose)

BPR configurations

- Various configurations were developed to exploit various optimisation principles:
 - To protect the ANAEROBIC reactor from nitrate and oxygen recirculation
 - Maximize the consumption of S_{VFA} by PAO

Conclusions

- P removal vs eutrophication
- Low in natural systems
- BPR complements chemical P «ecologically»
- Not yet a PAO pure culture but enhanced cultures
- Biochemical mechanisms sufficiently well understood
- Various BPR configurations were developed

