Anaerobic Wastewater Treatment # **Anaerobic Wastewater Treatment** Jules B. van Lier¹, Nidal Mahmoud² and Grietje Zeeman¹ ¹ Wageningen University, The Netherlands / Lettinga Associates Foundation (LeAF), The Netherlands ² Institute of Environmental and Water Studies (IEWS), Birzeit University, Birzeit, The West Bank, Palestine Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van L #### Content - 1. Anaerobic wastewater treatment for sustainable development - 2. Microbial aspects of anaerobic conversions - 3. Predicting the CH₄ production - 4. Impacts of SO₄[−] - 5. Anaerobic reactor technology - 6. The upflow anaerobic sludge blanket (UASB) reactor - 7. Start-up and sludge granulation - 8. Anaerobic treatment of domestic sewage WADENINGEN UNIVERSIT 1. Anaerobic wastewater treatment for sustainable development Ordine Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Julies van Lier ### Sustainability criteria for wastewater treatment systems - 1. High treatment efficiency (according specifications) for: COD/BOD, suspended solids, N, P, etc. - 2. Robust technology: high stability towards power cuts, peak loads, toxicants, etc. - 3. Flexible with respect to future amendments (extensions, improvement) - 4. Simple in operation maintenance and control - 5. Limited number of treatment steps - 6. Absence of disposal problems (e.g. sludge) - 7. No malodour nuisance - 8. Applicable at any size, also inside city sections for a decentralised approach - 9. Availability of local experience - 10. Designed for (by)products recovery es van Lier | Comparison Aerobic - Anaerobic | | | | | |--|---|--|--|--| | | Aerobic | Anaerobic | | | | Reaction | $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ | $C_6H_{12}O_6 \rightarrow 3CO_2 + 3CH_4$ | | | | Energy release | ΔG° ' = -2840 kJ/mol glucose | ΔG° ' = -393 kJ/mol glucose | | | | Carbon balance | $50\% \rightarrow CO_2$
$50\% \rightarrow \text{biomass}$ | 95% → CH ₄ + CO ₂ (= biogas)
5% → biomass | | | | Energy balance | 60% → biomass
40% → heat production | 90% retained in CH ₄
5% → biomass | | | | Biomass production | Fast growth of biomass,
Resulting in a sewage sludge problem | 5% → heat production
Slow growth of biomass | | | | Energy input for aeration | Yes | No | | | | ' | ' | | | | | Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier | | | | | #### **High-rate Anaerobic Wastewater Treatment 2007** - Reduction of excess sludge production by 90%! - Up to 90% reduction in space requirements! - High loading rates (up to 35 kg COD.m⁻³.day⁻¹), smaller reactors - No use of fossil fuels for treatment (saving ≈ 0.5-1 kWh / kg COD) - Production of energy as CH4 (3.8* kWh / kg COD converted) - Rapid start up with granular sludge (1 week) - No or very little use of chemicals (e.g. nutrients) - Plain technology with high treatment efficiencies - Anaerobic sludge can be stored unfed → campaign industries - Excess sludge has a market value - Compact high-rate systems facilitate in-house loop closure - Perspectives for nutrients recovery (agricultural reuse, struvite) - Bleed of sulphur as H₂S via produced biogas Online Course on Biological Wastewater Treatment: Principles, Modelling and Design hapter on Anaerobic Wastewater Treatment by Jules van Lie MADENINGEN UNIVERSIT ## Potentials of carbon credits with AD projects? CO₂ emissions with conventional electricity production: Coal powered electricity plant: 0.86 ton CO₂/MWh-e Natural gas powered plant: 0.44 ton CO₂/MWh-e If bio-CH₄ is used as renewable fuel: CO₂ emission reduction !! Expected stabilised price: 20 €/ton CO₂ ntine Course on Biological Wastewater Treatment: Principles; Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier #### **Energy & carbon credits in anaerobic wastewater treatment:** - Loading capacity AWWT: 10 35 kg COD/(m³.d) - Energy output: **0.5 1.7** kW-elec/m³ (80% CH₄ rec., 40% CHP eff.) - CO₂ emission reduction: **3.8 13** ton CO₂/(m³.y) (coal PP) | PARAMETER | UNIT | Brewery | |-------------|------|------------| | Flow | m³/d | 2720- 5780 | | COD average | mg/l | 4043 | | COD range | mg/l | 2020- 5790 | | SS | mg/l | 260- 2160 | | Temperature | °C | 21- 40 | | рН | | 2.6- 7.0 | #### Reactor: COD-load: 17 ton/day Loading: 35 kg COD/(m3.d) Reactor: V = 500 m3 (h=25 m, d=5 m) Excess sludge: ≈ 0.6 ton DM/d Online Course on Biological Wastewater Treatment: Principles, Modelling and Design hapter on Anaerobic Wastewater Treatment by Jules van Lie ## **Brewery Effluent: Energy & Carbon Credits benefit** #### **Energy recovered:** 17 ton COD x 0.8 (eff) x 3820 kWh* x 40% CHP eff. = 21 MWh-e/d \approx 0.9 MW #### No energy consumption: Assumed energy requirement activated sludge: \approx 0.5-1 kWh-e/kg COD_{rem.} Saved: 17 ton COD x 0.8 (eff.) = 7-14 MWh-e/day **Total energy benefit:** 21 + (7-14) = 28-35 MWh-e/day ≅ 1680-2100 €/d (with 0.06 €/kWh) or: **700.000 €/year** #### CO₂ emission reduction Recovered: 21 MWh-e/d x 0.86 ton CO_2 /MWh-e \approx 18 ton CO_2 /day (coal) Prevented: 7-15 MWh-e/d x 0.86 ton CO_2 /MWh-e \approx 6-13 ton CO_2 /day (coal) Potential benefit: 18 x 20 x 365 = **130.000 €year** Online Course on Sintonical Wastewater Treatment - Principles: Modelling and Design Chanter on Appendix Wastewater Treatment by Jules van Lier # Importance for developing countries: Energy recovery & CO₂ credits as an incentive to implement environmental technologies in developing countries # Treatment alcohol distillery effluents Cuba (Santa Clara): - 800 m³.d⁻¹, - 65 kg COD.m⁻³ **Anaerobics:** 13,500 m³ CH₄.d⁻¹ or: about **2.2 MW-electric** (40% eff.) At a price of 0.12 US\$.kWh⁻¹ this equals: 2.300.000 US\$.y-1 CO₂ credits: 330.000 US\$.y⁻¹ (coal) ne Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Tre 2. Microbial aspects of anaerobic conversions mine Course on Biological Wastewater Treatment: Principles: Modelling and Design Chapter on Angerable Wastewater Treatment by Jules van Lier ### History of anaerobic microbiology - Volta (1776) discovery of CH₄ in swamp-gas - Early microbiologist: Béchamp (1868), Popoff (1875) - Microbiology of methane bacteria: Söhngen (1906) *Methanothrix soehngenii* (in defined mix) (renamed *Methanosaeta soehngenii*, Patel) Schnellen (1947): first pure cultures (*Methanosarcina barkeri*, *Methanobacterium formicium*) Bryant (1967) very important discovery: Methanobacterium Omelianski (fermenting EtOH) exist of 2 bacteria !! EtOH =>Acetate + H_2 (not directly to CH_4 !!) Description of the new kingdom of Archeabacteria - methane bacteria - sulphate reducer - halophilic bacter, etc. Inding Course on Biological Wastewater Treatment: Principles: Modelling and Design Chanter on Angerobic Wastewater Treatment by Jules van Lier # Hydrolysis - slow process (generally rate limiting): $dS/dt = -K_h \cdot S$ - optimum pH = 6 - retention time and particle size are rate determining parameters - cellulose/hemicellulose degradation depends on lignin fraction - hydrolysis of fats hardly proceeds < 15-20 °C (rate limiting step) (product) inhibition by: - LCFA - NH3 - amino acids - H₂ ? #### **Acidogenesis / Fermentation - Sugars** - Release of protons (H+) and reaction products (proton acceptors) - H₂ formation (catalyzed by the enzyme hydrogenase) - Performed by a very large group of bacteria (about 1% of all bacteria facultative fermenters) $$C_{12}H_{22}O_{11} + 9 H_2O \rightarrow 4 CH_3COO^- + 4 HCO_3^- + 8 H^+ + 8 H_2$$ $${\rm C_{12}H_{22}O_{11}} + 5~{\rm H_2O} \rightarrow 2~{\rm CH_3CH_2CH_2COO^-} + 4~{\rm HCO_3}^- + 6~{\rm H^+} + 4~{\rm H_2}$$ - End products depend on circumstances, e.g. - glucose fermentation in a two-step system: more reduced products like ethanol, lactate, propionate, butyrate, CO₂ and H₂ - glucose fermentation in a one-step system: acetate, H₂ and CO₂ - production of acids proceeds up to pH = 4 (product inhibition) Online Course on Biological Wastewater Treatment: Principles, Modelling and Design hapter on Anaerobic Wastewater Treatment by Jules van Lie ## Acidogenesis of sugars: most rapid step! Kinetic Properties Acidifiers / Methanogens | Process | R _x
gCOD/gVSS
/d | Y
g VSS/g
COD | Ks
mg COD/l | μ-max
Day ⁻¹ | |----------------|-----------------------------------|---------------------|----------------|----------------------------| | Acidogenesis | 13 | 0.15 | 200 | 2.0 | | Methanogenesis | 3 | 0.03 | 30 | 0.12 | | Overall | 2 | 0.03 -0.18 | - | 0.12 | Inding Course on Biological Wastewater Treatment: Principles: Modelling and Design Chanter on Angerobic Wastewater Treatment by Jules van Lier # Inhibition by VFA Concentrations of VFA that correspond to the 50% inhibition of methanogenic activity. Calculated from 16 and 6 mg COD/l of unionized acetic and propionic acids, respectively | рΗ | 50% Inhibit | ing concentration | | |-----|-------------|--------------------|--| | | acetate | propionate | | | | mg C | OD L ⁻¹ | | | 5.0 | 44 | 13 | $[VFA]_{uniquized} = [VFA] * \alpha_0$ | | 5.5 | 106 | 30 | $[\mathbf{v}_1, \mathbf{v}]_{\text{unionized}} = [\mathbf{v}_1, \mathbf{v}_1] \alpha_0$ | | 6.0 | 300 | 80 | | | 6.5 | 912 | 241 | $\alpha_{0} = \{10^{(pH-pKa)} + 1\}$ | | 7.0 | 2851 | 745 | pKa = 4.75 | | 7.5 | 8976 | 2358 | pRa = 4.75 | | 8.0 | 28368 | 7398 | | ntline Course on Biological Wastewater Treatment: Principles; Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier #### **Acidogenesis / Fermentation - Proteins** organically bound N (amino acids) is released as NH4+ (stickland reaction: oxidation-reduction) Alanine: $CH_3CHNH_2COO^- + 3 H_2O \rightarrow CH_3COO^- + HCO_3^- + NH_4^+ + 2 H_2^-$ Glycine: $2 \text{ CH}_2\text{NH}_2\text{COO}^- + 2 \text{ H}_2 \rightarrow 2 \text{ CH}_3\text{COO}^- + 2 \text{ NH}_3$ alanine + glycine + 3 $H_2O \rightarrow$ 3 acetate + 2 $NH_3 + NH_4^+ + HCO_3^-$ (2 $NH_3 + 2 H_2O + 2 CO_2 \rightarrow 2 NH_4^+ + 2 HCO_3^-$) Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Li #### MADENINGEN UNIVER ## **Acidogenesis / Fermentation – Long Chain Fatty Acids** anaerobic degradation of LCFA proceeds via β-oxidation $\mathsf{CH_3\text{-}CH_2\text{-}CH$ palmitic acid: CH_3 - $(CH_2)_{14}$ - COO^- + 14 $H_2O \rightarrow 8$ CH_3COO^- + 7 H^+ + 14 H_2 With uneven numbers: acetate + propionate is formed: $CH_3 (CH_2)_{14}$ - CH_2COO^- + 14 $H_2O \rightarrow 7$ CH_3COO^- + $CH_3CH_2COO^-$ 7 H^+ + 14 H_2 unsaturated LCFA are firstly hydrogenated before degradation Online Course on Sinjonical Wastewater Treatment - Principles: Modelling and Design Chanter on Angerable Wastewater Treatment by Jules van Lier ### **Acetogenesis (Acetate formation)** Conversion of fermentation products into acetic acid, ${\rm CO_2}$, and ${\rm H_2}$ Mainly formation of propionic acid, butyric acid and ethanol propionate $$^{-}$$ + 3H $_{2}$ O \rightarrow acetate $^{-}$ + HCO $_{3}$ $^{-}$ + H $^{+}$ + 3H $_{2}$ Δ G $_{0}$ $^{'}$ = + 76.1 kJ/mole butyrate $^{-}$ + 2H2O \rightarrow 2 acetate $^{-}$ + H $^{+}$ + 2H $_{2}$ Δ G $_{0}$ $^{'}$ = + 48.1 kJ/mole ethanol + 2H $_{2}$ O \rightarrow acetate $^{-}$ + H $^{+}$ + 2H $_{2}$ Δ G $_{0}$ $^{'}$ = + 9.6 kJ/mole 4 $$H_2$$ + CO_2 \rightarrow CH_4 + $2H_2O$ Δ G_0 ' = -138.9 kJ/mole Need for syntrophic associations !!! Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier #### MADENINGEN UNIVERSIT #### **GIBB's FREE ENERGY** $$aA + bB \Leftrightarrow cC + dD$$ $$\Delta G' = \Delta G'_0 + RT \ln \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$ $\Delta G'$ = Actual Gibb's free energy change [kJ/mole] $\Delta G_0'$ = Standard Gibb's free energy change [kJ/mole] under standard conditions (pH = 7, T = 25 °C, p = 1 atm., the activity of all compounds present in solution is 1 mole/kg R = gas constant (8.28 J) T = absolute temperature [K] Online Course on Biological Wastewater Treatment: Principles: Modelline and Design Chanter on Angeroble Wastewater Treatment by Jules van Lier ### Methanogenesis #### → Substrates ΔG^0 (kJ/mole CH₄) | | , | ., | |--|--|--------| | 4H ₂ + CO ₂ | => CH ₄ + 2H ₂ O | -130.4 | | 4HCOOH | => CH ₄ + 3CO ₂ + 2H ₂ O | -119.5 | | 4CO + 2H ₂ O | => CH ₄ + 3CO ₂ | -185.5 | | 4CH ₃ OH | => 3CH ₄ + CO ₂ + 2H ₂ O | -103.0 | | CH ₃ OH + H ₂ | => CH ₄ + H ₂ O | -112.5 | | 4CH ₃ NH ₃ + 2 H ₂ O | => 3CH ₄ + CO ₂ + 4NH ₄ ⁺ | - 74.0 | | 2(CH ₃) ₂ NH ₂ + 2H ₂ O | => 9CH ₄ + 3CO ₂ + 4NH ₄ ⁺ | - 74.0 | | CH ₃ COOH | => CH ₄ + CO ₂ | - 32.5 | Most important substrates: hydrogen and acetate furthermore: formate, carbon monoxyde, methanol and methylamines ine Course on Biological Wastewater Treatment: Principles: Modelling and Design Chanter on Angeroble Wastewater Treatment by Jules van Her ## **Kinetic parameters** | Substrate | Product | μ _{max}
(d ⁻¹) | t _d
(d) | K _s
(mg COD • I⁻¹) | |------------|---------|--|-----------------------|----------------------------------| | acetate* | methane | 0.12
0.71 | 5.8
1.0 | 30
300 | | hydrogen | methane | 2.85 | 0.2 | 0.06 | | propionate | acetate | 0.22 | 3.2 | 48 | | butyrate | acetate | 0.55 | 1.3 | 9 | ^{*} two different acetate consuming methanogens Online Course on Biological Wastewater Treatment: Principles, Modelling and Design hapter on Anaerobic Wastewater Treatment by Jules van Li Acetate as Substrate (Methanosaeta) Sucrose as Substrate (mixed population) nline Course on Biological Wastewater Treatment: Principles, Modelling and Design hapter on Anaerobic Wastewater Treatment by Jules van Li #### Bacterial composition of methanogenic sludge granule 1. 20-50% consist of methanogenic bacteria: acetotrophic (Methanosaeta, Methanosarcina) and hydrogenotrophic (e.g. Methanobacterium) - Coccoid - Excretion ECP \rightarrow clumps - Substrate: Ac⁻, H₂/CO₂, MeOH, methylamines - Low substrate affinity - Relatively high μ - Rod-shaped (4-10 cells) or filaments - Hydrophobic surface - Substrate: Acetate - High substrate affinity - Low $\mu,$ low Υ - Generally predominant !! tine Course on Riological Wastewater Treatment: Principles: Modelling and Design. Chanter on Angerobic Wastewater Treatment by Jules van Lier ## Macro nutrients requirement of anaerobic sludge The requirement for N and P can be calculated from the cell composition. (i.e. 10-12% N and appr. 2% P) substrate = mixture of volatile fatty acids growth yield = 0.02 - 0.05 g/g COD: N: P = 1000: 5: 1 C: N: P = 330: 5: 1 substrate = non-acidified carbohydrates → growth yield = 0.10 - **0.15** g/g COD: N: P = 350: 5: 1 C : N: P = 130 : 5 : 1 Level of micro-nutrients mostly sufficient in agroindustrial wastewater Online Course on Biological Wastewater Treatment: Principles, Modelling and Design hapter on Anaerobic Wastewater Treatment by Jules van Lie # Micro nutrients (heavy metals) requirement Based on elemental composition of methane bacteria (Scherer, 1983) | Element | Concentration
mg kg ⁻¹ dried cell | Element | Concentration
mg kg ⁻¹ dried cell | | | |-----------------|---|--------------|---|--|--| | Macronutrients: | | Micronutrien | Micronutrients: | | | | N | 65000 | Fe | 1800 | | | | Р | 15000 | Ni | 100 | | | | K | 10000 | Co | 75 | | | | S | 10000 | Мо | 60 | | | | Ca | 4000 | Zn | 60 | | | | Mg | 3000 | Mn | 20 | | | | | | Cu | 10 | | | Conversion factors for methane bacteria cell: g VSS*1.4= g COD g TS*0.825= g VSS Online Course on Sintonical Wastewater Treatment - Principles: Modelling and Design Chanter on Appendix Wastewater Treatment by Jules van Lier ### Important notes - Anaerobic microbial conversion differs from aerobic - Ultimate COD removal via production of CH₄ - Anaerobic bacteria have a narrow substrate spectrum: - complex consortia are needed for complete COD removal - Anaerobic bacteria form bacterial aggregates (anaerobic granular sludge). Proper bacterium should be selected. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lie