Anaerobic Wastewater Treatment

Anaerobic Wastewater Treatment

Jules B. van Lier¹, Nidal Mahmoud² and Grietje Zeeman¹

¹ Wageningen University, The Netherlands / Lettinga Associates Foundation (LeAF), The Netherlands

² Institute of Environmental and Water Studies (IEWS), Birzeit University, Birzeit, The West Bank, Palestine

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van L

Content

- 1. Anaerobic wastewater treatment for sustainable development
- 2. Microbial aspects of anaerobic conversions
- 3. Predicting the CH₄ production
- 4. Impacts of SO₄[−]
- 5. Anaerobic reactor technology
- 6. The upflow anaerobic sludge blanket (UASB) reactor
- 7. Start-up and sludge granulation
- 8. Anaerobic treatment of domestic sewage

WADENINGEN UNIVERSIT

1. Anaerobic wastewater treatment for sustainable development

Ordine Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Julies van Lier

Sustainability criteria for wastewater treatment systems

- 1. High treatment efficiency (according specifications) for: COD/BOD, suspended solids, N, P, etc.
- 2. Robust technology: high stability towards power cuts, peak loads, toxicants, etc.
- 3. Flexible with respect to future amendments (extensions, improvement)
- 4. Simple in operation maintenance and control
- 5. Limited number of treatment steps
- 6. Absence of disposal problems (e.g. sludge)
- 7. No malodour nuisance
- 8. Applicable at any size, also inside city sections for a decentralised approach
- 9. Availability of local experience
- 10. Designed for (by)products recovery

es van Lier

Comparison Aerobic - Anaerobic				
	Aerobic	Anaerobic		
Reaction	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$	$C_6H_{12}O_6 \rightarrow 3CO_2 + 3CH_4$		
Energy release	ΔG° ' = -2840 kJ/mol glucose	ΔG° ' = -393 kJ/mol glucose		
Carbon balance	$50\% \rightarrow CO_2$ $50\% \rightarrow \text{biomass}$	95% → CH ₄ + CO ₂ (= biogas) 5% → biomass		
Energy balance	60% → biomass 40% → heat production	90% retained in CH ₄ 5% → biomass		
Biomass production	Fast growth of biomass, Resulting in a sewage sludge problem	5% → heat production Slow growth of biomass		
Energy input for aeration	Yes	No		
'	'			
Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier				

High-rate Anaerobic Wastewater Treatment 2007

- Reduction of excess sludge production by 90%!
- Up to 90% reduction in space requirements!
- High loading rates (up to 35 kg COD.m⁻³.day⁻¹), smaller reactors
- No use of fossil fuels for treatment (saving ≈ 0.5-1 kWh / kg COD)
- Production of energy as CH4 (3.8* kWh / kg COD converted)
- Rapid start up with granular sludge (1 week)
- No or very little use of chemicals (e.g. nutrients)
- Plain technology with high treatment efficiencies
- Anaerobic sludge can be stored unfed → campaign industries
- Excess sludge has a market value
- Compact high-rate systems facilitate in-house loop closure
- Perspectives for nutrients recovery (agricultural reuse, struvite)
- Bleed of sulphur as H₂S via produced biogas

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

hapter on Anaerobic Wastewater Treatment by Jules van Lie

MADENINGEN UNIVERSIT

Potentials of carbon credits with AD projects?

CO₂ emissions with conventional electricity production:

Coal powered electricity plant: 0.86 ton CO₂/MWh-e Natural gas powered plant: 0.44 ton CO₂/MWh-e

If bio-CH₄ is used as renewable fuel:

CO₂ emission reduction !!

Expected stabilised price: 20 €/ton CO₂

ntine Course on Biological Wastewater Treatment: Principles; Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier

Energy & carbon credits in anaerobic wastewater treatment:

- Loading capacity AWWT: 10 35 kg COD/(m³.d)
- Energy output: **0.5 1.7** kW-elec/m³ (80% CH₄ rec., 40% CHP eff.)
- CO₂ emission reduction: **3.8 13** ton CO₂/(m³.y) (coal PP)

PARAMETER	UNIT	Brewery
Flow	m³/d	2720- 5780
COD average	mg/l	4043
COD range	mg/l	2020- 5790
SS	mg/l	260- 2160
Temperature	°C	21- 40
рН		2.6- 7.0

Reactor:

COD-load: 17 ton/day Loading: 35 kg COD/(m3.d) Reactor: V = 500 m3 (h=25 m, d=5 m) Excess sludge: ≈ 0.6 ton DM/d

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

hapter on Anaerobic Wastewater Treatment by Jules van Lie

Brewery Effluent: Energy & Carbon Credits benefit

Energy recovered:

17 ton COD x 0.8 (eff) x 3820 kWh* x 40% CHP eff. = 21 MWh-e/d \approx 0.9 MW

No energy consumption:

Assumed energy requirement activated sludge: \approx 0.5-1 kWh-e/kg COD_{rem.} Saved: 17 ton COD x 0.8 (eff.) = 7-14 MWh-e/day

Total energy benefit: 21 + (7-14) = 28-35 MWh-e/day ≅ 1680-2100 €/d (with 0.06 €/kWh) or: **700.000 €/year**

CO₂ emission reduction

Recovered: 21 MWh-e/d x 0.86 ton CO_2 /MWh-e \approx 18 ton CO_2 /day (coal) Prevented: 7-15 MWh-e/d x 0.86 ton CO_2 /MWh-e \approx 6-13 ton CO_2 /day (coal)

Potential benefit: 18 x 20 x 365 = **130.000 €year**

Online Course on Sintonical Wastewater Treatment - Principles: Modelling and Design Chanter on Appendix Wastewater Treatment by Jules van Lier

Importance for developing countries:

Energy recovery & CO₂ credits as an incentive to implement environmental technologies in developing countries

Treatment alcohol distillery effluents Cuba (Santa Clara):

- 800 m³.d⁻¹,
- 65 kg COD.m⁻³

Anaerobics: 13,500 m³ CH₄.d⁻¹ or: about **2.2 MW-electric** (40% eff.) At a price of 0.12 US\$.kWh⁻¹ this

equals: 2.300.000 US\$.y-1

CO₂ credits: 330.000 US\$.y⁻¹ (coal)

ne Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Tre

2. Microbial aspects of anaerobic conversions

mine Course on Biological Wastewater Treatment: Principles: Modelling and Design Chapter on Angerable Wastewater Treatment by Jules van Lier

History of anaerobic microbiology

- Volta (1776) discovery of CH₄ in swamp-gas
- Early microbiologist: Béchamp (1868), Popoff (1875)
- Microbiology of methane bacteria:

Söhngen (1906) *Methanothrix soehngenii* (in defined mix) (renamed *Methanosaeta soehngenii*, Patel)
Schnellen (1947): first pure cultures (*Methanosarcina barkeri*, *Methanobacterium formicium*)

Bryant (1967) very important discovery:

Methanobacterium Omelianski (fermenting EtOH) exist of 2 bacteria !! EtOH =>Acetate + H_2 (not directly to CH_4 !!)

Description of the new kingdom of Archeabacteria

- methane bacteria
- sulphate reducer
- halophilic bacter, etc.

Inding Course on Biological Wastewater Treatment: Principles: Modelling and Design Chanter on Angerobic Wastewater Treatment by Jules van Lier

Hydrolysis

- slow process (generally rate limiting): $dS/dt = -K_h \cdot S$
- optimum pH = 6
- retention time and particle size are rate determining parameters
- cellulose/hemicellulose degradation depends on lignin fraction
- hydrolysis of fats hardly proceeds < 15-20 °C (rate limiting step)
 (product) inhibition by:
 - LCFA
 - NH3
 - amino acids
 - H₂ ?

Acidogenesis / Fermentation - Sugars

- Release of protons (H+) and reaction products (proton acceptors)
- H₂ formation (catalyzed by the enzyme hydrogenase)
- Performed by a very large group of bacteria (about 1% of all bacteria facultative fermenters)

$$C_{12}H_{22}O_{11} + 9 H_2O \rightarrow 4 CH_3COO^- + 4 HCO_3^- + 8 H^+ + 8 H_2$$

$${\rm C_{12}H_{22}O_{11}} + 5~{\rm H_2O} \rightarrow 2~{\rm CH_3CH_2CH_2COO^-} + 4~{\rm HCO_3}^- + 6~{\rm H^+} + 4~{\rm H_2}$$

- End products depend on circumstances, e.g.
 - glucose fermentation in a two-step system: more reduced products like ethanol, lactate, propionate, butyrate, CO₂ and H₂
 - glucose fermentation in a one-step system: acetate, H₂ and CO₂
- production of acids proceeds up to pH = 4 (product inhibition)

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

hapter on Anaerobic Wastewater Treatment by Jules van Lie

Acidogenesis of sugars: most rapid step!

Kinetic Properties Acidifiers / Methanogens

Process	R _x gCOD/gVSS /d	Y g VSS/g COD	Ks mg COD/l	μ-max Day ⁻¹
Acidogenesis	13	0.15	200	2.0
Methanogenesis	3	0.03	30	0.12
Overall	2	0.03 -0.18	-	0.12

Inding Course on Biological Wastewater Treatment: Principles: Modelling and Design Chanter on Angerobic Wastewater Treatment by Jules van Lier

Inhibition by VFA

Concentrations of VFA that correspond to the 50% inhibition of methanogenic activity. Calculated from 16 and 6 mg COD/l of unionized acetic and propionic acids, respectively

рΗ	50% Inhibit	ing concentration	
	acetate	propionate	
	mg C	OD L ⁻¹	
5.0	44	13	$[VFA]_{uniquized} = [VFA] * \alpha_0$
5.5	106	30	$[\mathbf{v}_1, \mathbf{v}]_{\text{unionized}} = [\mathbf{v}_1, \mathbf{v}_1] \alpha_0$
6.0	300	80	
6.5	912	241	$\alpha_{0} = \{10^{(pH-pKa)} + 1\}$
7.0	2851	745	pKa = 4.75
7.5	8976	2358	pRa = 4.75
8.0	28368	7398	

ntline Course on Biological Wastewater Treatment: Principles; Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier

Acidogenesis / Fermentation - Proteins

 organically bound N (amino acids) is released as NH4+ (stickland reaction: oxidation-reduction)

Alanine: $CH_3CHNH_2COO^- + 3 H_2O \rightarrow CH_3COO^- + HCO_3^- + NH_4^+ + 2 H_2^-$

Glycine: $2 \text{ CH}_2\text{NH}_2\text{COO}^- + 2 \text{ H}_2 \rightarrow 2 \text{ CH}_3\text{COO}^- + 2 \text{ NH}_3$

alanine + glycine + 3 $H_2O \rightarrow$ 3 acetate + 2 $NH_3 + NH_4^+ + HCO_3^-$ (2 $NH_3 + 2 H_2O + 2 CO_2 \rightarrow 2 NH_4^+ + 2 HCO_3^-$)

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van Li

MADENINGEN UNIVER

Acidogenesis / Fermentation – Long Chain Fatty Acids

anaerobic degradation of LCFA proceeds via β-oxidation

 $\mathsf{CH_3\text{-}CH_2\text{-}CH$

palmitic acid: CH_3 - $(CH_2)_{14}$ - COO^- + 14 $H_2O \rightarrow 8$ CH_3COO^- + 7 H^+ + 14 H_2

With uneven numbers: acetate + propionate is formed: $CH_3 (CH_2)_{14}$ - CH_2COO^- + 14 $H_2O \rightarrow 7$ CH_3COO^- + $CH_3CH_2COO^-$ 7 H^+ + 14 H_2

unsaturated LCFA are firstly hydrogenated before degradation

Online Course on Sinjonical Wastewater Treatment - Principles: Modelling and Design Chanter on Angerable Wastewater Treatment by Jules van Lier

Acetogenesis (Acetate formation)

Conversion of fermentation products into acetic acid, ${\rm CO_2}$, and ${\rm H_2}$ Mainly formation of propionic acid, butyric acid and ethanol

propionate
$$^{-}$$
 + 3H $_{2}$ O \rightarrow acetate $^{-}$ + HCO $_{3}$ $^{-}$ + H $^{+}$ + 3H $_{2}$ Δ G $_{0}$ $^{'}$ = + 76.1 kJ/mole butyrate $^{-}$ + 2H2O \rightarrow 2 acetate $^{-}$ + H $^{+}$ + 2H $_{2}$ Δ G $_{0}$ $^{'}$ = + 48.1 kJ/mole ethanol + 2H $_{2}$ O \rightarrow acetate $^{-}$ + H $^{+}$ + 2H $_{2}$ Δ G $_{0}$ $^{'}$ = + 9.6 kJ/mole

4
$$H_2$$
 + CO_2 \rightarrow CH_4 + $2H_2O$ Δ G_0 ' = -138.9 kJ/mole

Need for syntrophic associations !!!

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van Lier

MADENINGEN UNIVERSIT

GIBB's FREE ENERGY

$$aA + bB \Leftrightarrow cC + dD$$

$$\Delta G' = \Delta G'_0 + RT \ln \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

 $\Delta G'$ = Actual Gibb's free energy change [kJ/mole]

 $\Delta G_0'$ = Standard Gibb's free energy change [kJ/mole] under standard conditions (pH = 7, T = 25

°C, p = 1 atm., the activity of all compounds

present in solution is 1 mole/kg

R = gas constant (8.28 J)

T = absolute temperature [K]

Online Course on Biological Wastewater Treatment: Principles: Modelline and Design Chanter on Angeroble Wastewater Treatment by Jules van Lier

Methanogenesis

→ Substrates

 ΔG^0

(kJ/mole CH₄)

	,	.,
4H ₂ + CO ₂	=> CH ₄ + 2H ₂ O	-130.4
4HCOOH	=> CH ₄ + 3CO ₂ + 2H ₂ O	-119.5
4CO + 2H ₂ O	=> CH ₄ + 3CO ₂	-185.5
4CH ₃ OH	=> 3CH ₄ + CO ₂ + 2H ₂ O	-103.0
CH ₃ OH + H ₂	=> CH ₄ + H ₂ O	-112.5
4CH ₃ NH ₃ + 2 H ₂ O	=> 3CH ₄ + CO ₂ + 4NH ₄ ⁺	- 74.0
2(CH ₃) ₂ NH ₂ + 2H ₂ O	=> 9CH ₄ + 3CO ₂ + 4NH ₄ ⁺	- 74.0
CH ₃ COOH	=> CH ₄ + CO ₂	- 32.5

Most important substrates: hydrogen and acetate

furthermore: formate, carbon monoxyde, methanol and methylamines

ine Course on Biological Wastewater Treatment: Principles: Modelling and Design Chanter on Angeroble Wastewater Treatment by Jules van Her

Kinetic parameters

Substrate	Product	μ _{max} (d ⁻¹)	t _d (d)	K _s (mg COD • I⁻¹)
acetate*	methane	0.12 0.71	5.8 1.0	30 300
hydrogen	methane	2.85	0.2	0.06
propionate	acetate	0.22	3.2	48
butyrate	acetate	0.55	1.3	9

^{*} two different acetate consuming methanogens

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

hapter on Anaerobic Wastewater Treatment by Jules van Li

Acetate as Substrate (Methanosaeta)

Sucrose as Substrate (mixed population)

nline Course on Biological Wastewater Treatment: Principles, Modelling and Design

hapter on Anaerobic Wastewater Treatment by Jules van Li

Bacterial composition of methanogenic sludge granule

1. 20-50% consist of methanogenic bacteria: acetotrophic (Methanosaeta, Methanosarcina) and hydrogenotrophic (e.g. Methanobacterium)

- Coccoid
- Excretion ECP \rightarrow clumps
- Substrate: Ac⁻, H₂/CO₂, MeOH, methylamines
- Low substrate affinity
- Relatively high μ

- Rod-shaped (4-10 cells) or filaments
- Hydrophobic surface
- Substrate: Acetate
- High substrate affinity
- Low $\mu,$ low Υ
- Generally predominant !!

tine Course on Riological Wastewater Treatment: Principles: Modelling and Design.

Chanter on Angerobic Wastewater Treatment by Jules van Lier

Macro nutrients requirement of anaerobic sludge

The requirement for N and P can be calculated from the cell composition. (i.e. 10-12% N and appr. 2% P)

substrate = mixture of volatile fatty acids

growth yield = 0.02 - 0.05 g/g

COD: N: P = 1000: 5: 1 C: N: P = 330: 5: 1

substrate = non-acidified carbohydrates

→ growth yield = 0.10 - **0.15** g/g

COD: N: P = 350: 5: 1

C : N: P = 130 : 5 : 1

Level of micro-nutrients mostly sufficient in agroindustrial wastewater

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

hapter on Anaerobic Wastewater Treatment by Jules van Lie

Micro nutrients (heavy metals) requirement

Based on elemental composition of methane bacteria (Scherer, 1983)

Element	Concentration mg kg ⁻¹ dried cell	Element	Concentration mg kg ⁻¹ dried cell		
Macronutrients:		Micronutrien	Micronutrients:		
N	65000	Fe	1800		
Р	15000	Ni	100		
K	10000	Co	75		
S	10000	Мо	60		
Ca	4000	Zn	60		
Mg	3000	Mn	20		
		Cu	10		

Conversion factors for methane bacteria cell:

g VSS*1.4= g COD

g TS*0.825= g VSS

Online Course on Sintonical Wastewater Treatment - Principles: Modelling and Design Chanter on Appendix Wastewater Treatment by Jules van Lier

Important notes

- Anaerobic microbial conversion differs from aerobic
- Ultimate COD removal via production of CH₄
 - Anaerobic bacteria have a narrow substrate spectrum:
- complex consortia are needed for complete COD removal
- Anaerobic bacteria form bacterial aggregates (anaerobic granular sludge). Proper bacterium should be selected.

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van Lie

