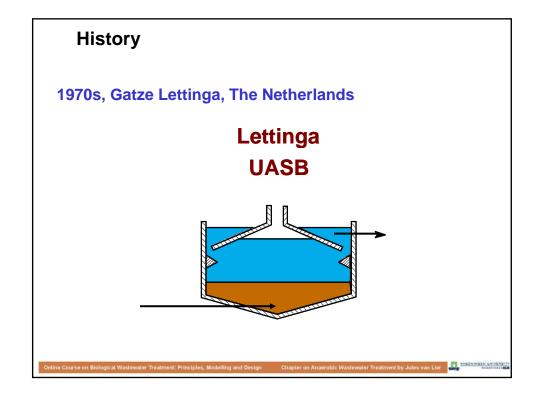
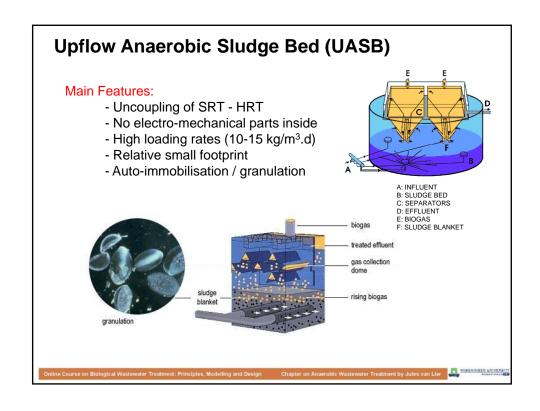
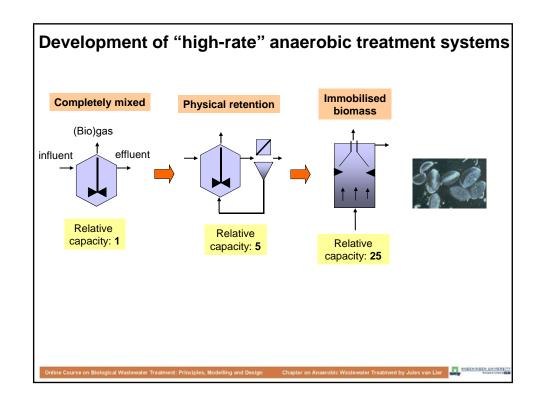
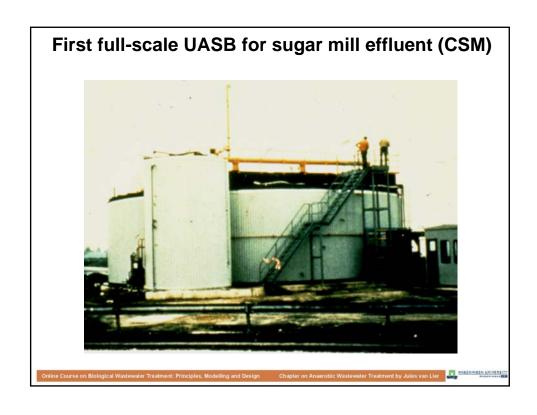


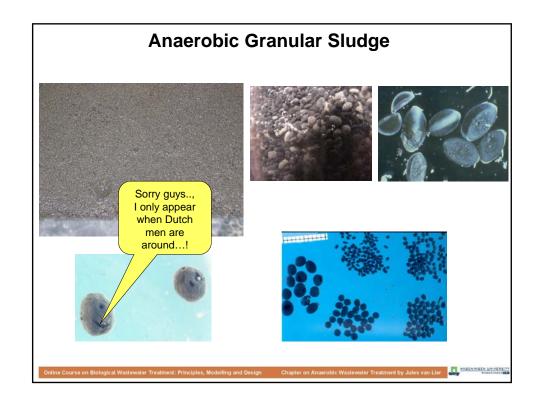
THE ANAEROBIC CONTACT PROCESS

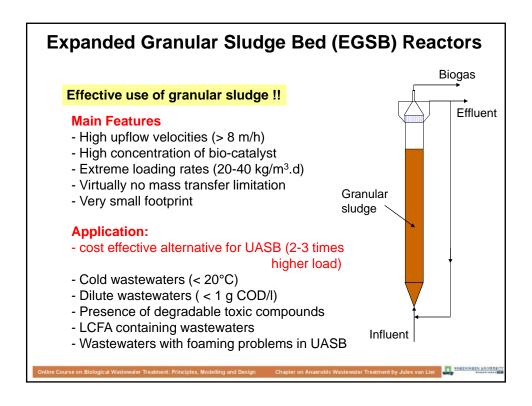

basic principles:

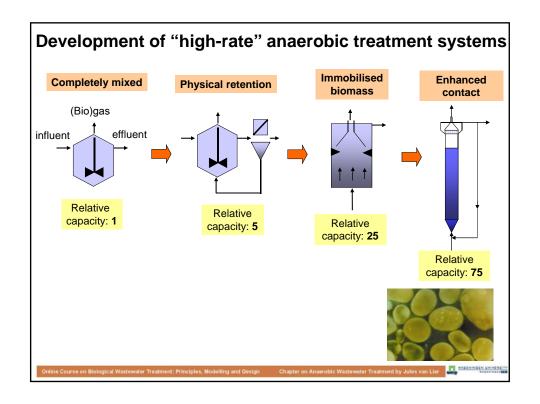

- complete mixing in the digester in order to achieve good contact between sludge and wastewater
- sludge recycling (flow rate generally 80-100 % of the influent flow rate) in order to maintain a high sludge content in the digester
 high organic removal efficiency stable operation

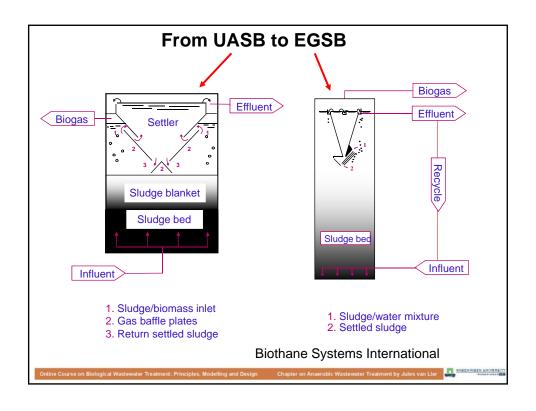

Online Course on Biological Wastewater Treatment: Principles: Modelling and Decision Chanter on Angerobic Wastewater Treatment by Jules van Lier

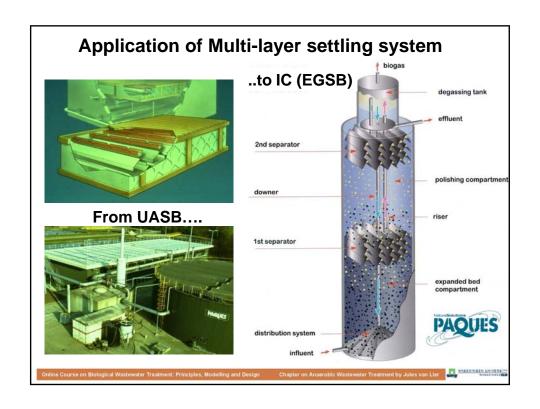


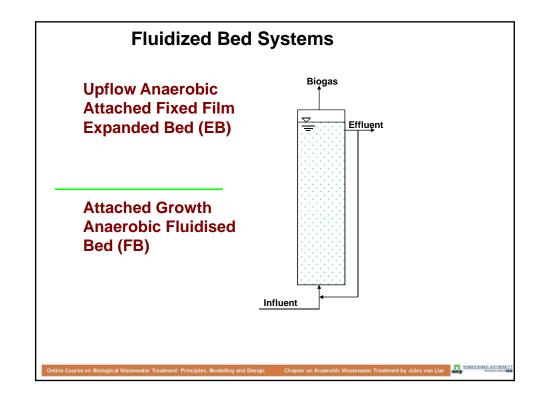

type of waste water	sludge loading (kg COD · kg ⁻¹ VSS · d ⁻¹)	load (kg COD ⋅ m ⁻³ ⋅ d ⁻¹)	reactor volume(m³)	COD removal efficiency (%)
sugar factory	1.3 - 2.0	0.6 - 12.9	2100 - 16000	90 - 95
distillery	0.17 - 0.24	1.5 - 2.5	300 - 1890	90 - 98
citric acid	0.16 - 0.29	1.3 - 4.0	10000	75 - 83
yeast factory	0.24 - 0.37	2.8 - 3.9	1900	77 - 82
dairy	0.13	0.88	84	-
green vegetable cannery	0.11 - 0.28	2.0 - 4.2	5000	90 - 95
pectin factory	0.03 - 0.22	1.7 - 5.3	3000 - 3618	88 - 93
starch factory	1.4	3.6	900	65
meat processing works	g 0.5 - 1.1	0.8 - 4.8	2670 - 7117	88 - 95











BASIC IDEAS UNDERLYING FLUIDIZED BED SYSTEMS

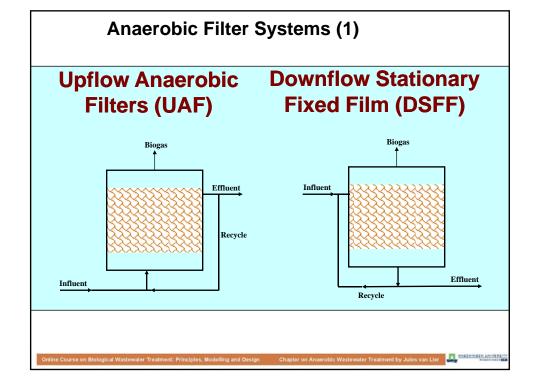
- Bacterial matter will attach to the surface of non-fixed carrier materials.
- 2. Mixing of wastewater with biomass is brought about by high recycle ratios / high upflow liquid velocities (bed fluidization)
- The thickness of the attached bacterial is controlled in order to accomplish a uniform and 'total' fluidization of the bed.

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van L

MADENINGEN UNIVERS

FB reactors rebuilt to EGSB reactors at DSM-yeast factory



Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier

MARENINGEN UNIVER

Anaerobic Attached Growth Processes

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier

Anaerobic Filter Systems (2)

SLUDGE RETENTION IN ATTACHED FILM SYSTEMS

In attached film systems, the maximum sludge retention depends on:

- the surface area put available for bacterial attachment
- the film thickness
- the space occupied by the carrier material
- the extent to which dispersed sludge aggregates are retained

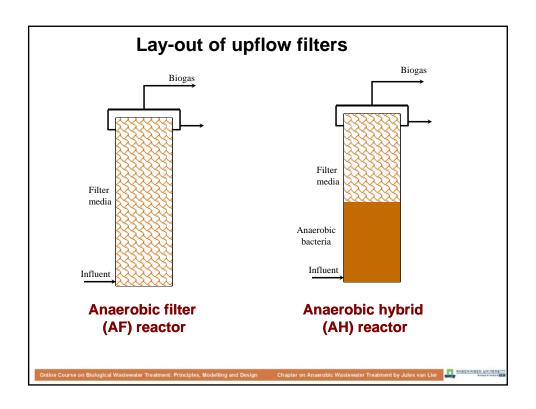
Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van Lie

Anaerobic Filter Systems (3)

Upflow Anaerobic Filter (UAF)

based on:


- attachment of a biofilm to a solid (stationary) carrier material
- sedimentation and entrapment of sludge particles between the interstices of the packing material
- formation of well settling sludge aggregates

Major disadvantage

- difficult to realise required contact between sludge and wastewater
- applicable loads are relatively low, I.e. generally below 10 kgCOD/m³.day

Online Course on Riological Wastewater Treatment: Principles: Modelling and Design Chanter on Angeroble Wastewater Treatment by Jules van Lier

Anaerobic Filter Systems (4)

<u>Downflow Stationary Fixed Film (DSFF)</u> <u>Attached Anaerobic Film (AFF)</u>

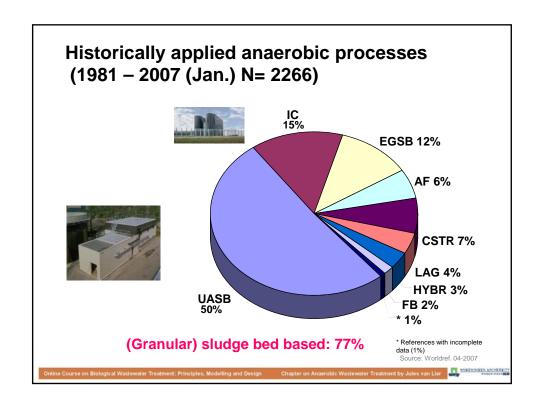
Sludge retention based on:

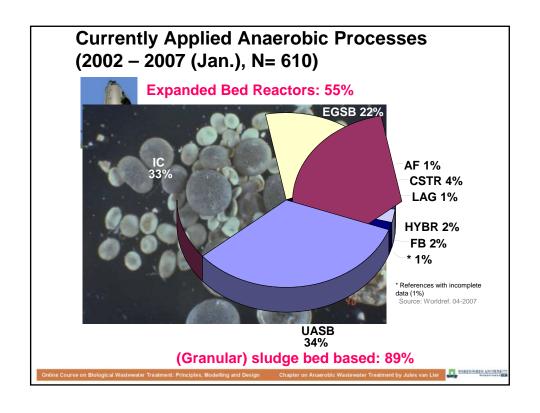
Attachment of biomass to the packing. (sludge retention is relatively low, because hardly any suspended material retained)

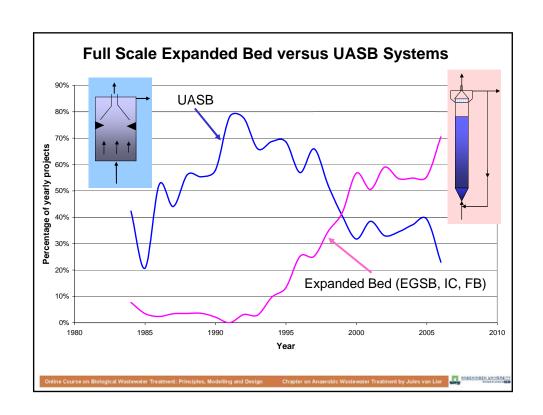
- generally no channelling problems
- low loading potentials

High Rate Anaerobic Reactor Systems

- high retention of viable sludge in the reactor
- sufficient contact between viable biomass and waste water
- high reaction rates and absence of serious transport limitations of substrate and metabolic end products
- sufficiently adapted and/or acclimatised viable biomass
- prevalence of favourable environmental conditions for all required organisms inside the reactor under all imposed operational conditions

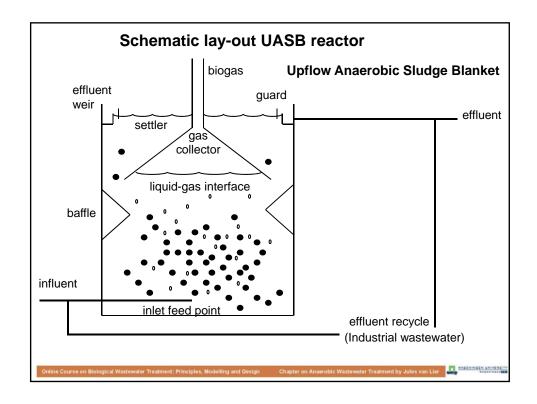

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design


hapter on Anaerobic Wastewater Treatment by Jules van Lie


MADENINGEN UNIVER

Bacterial attachment on non-fixed carriers e.g. FB (Fluidised Bed) reactors Bacterial attachment on fixed support materials e.g. Anaerobic filters Attached Film Auto immobilisation / granulation e.g. UASB (Upflow Anaerobic Sludge Bed) reactors Sludge settling and membrane filtration e.g. CP (Contact Process) reactors AMBR (Anaerobic membrane bioreactors) Separation

Reactor	Organic Loading Rate (kg COD/m³.d)	Problems
СР	0.5 - 5	low loading rate
AF	5 - 10	clogging
		entrapment of inert material
UASB	10 - 20	sludge flotation
		entrapment of inert material
FB	20 - 40	expensive
EGSB / IC	20 -40	"high-tech"



6. Upflow anaerobic sludge blanket (UASB) reactor

Ordine Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van Lier

Design Basis UASB reactor

- 1. Maximum retention of active methanogenic biomass (SRT in d).
- The maximum hydraulic loading potentials (m³/m³·d)
- 3. The maximum organic loading potentials (kg COD/m³-d)
- 4. The maximum applicable gas loading (m³/m³·d)

All 4 parameters set limits to the maximum hydraulic surface loading

$$V_{upward}(m/h) = \frac{Q_{\inf l}(m_3/h)}{A(m_2)}$$

UASB Reactor Size

For most industrial waste waters, the size of the reactor will be determined by the admissible organic space load. This space load greatly depends on:

- the temperature
- the waste water composition (e.g. presence of toxicants)
- the nature of the pollutants (biodegradability, acidification degree, SS content)
- the specific methanogenic activity of the sludge
- the sludge concentration

Designing OLR

- Sludge -waste water contact factor (fc), between <0 − 1> which depends on:
 - evenness of feed distribution
 - organic space loading rate

The applicable organic loading rate follows from:

$$Org.Load.Rate = r_v = f_c.Ac_T.X = [f_c.(\frac{V_{\text{max}} \cdot S}{K_m + S}).X]_T$$

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van Li

Reactor volume based on applicable organic loading rates

$$V_r = (c \cdot Q) \cdot r_v^{-1}$$

 \mathbf{r}_{v} depends on:

- amount of viable biomass
- reactor temperature
- feed composition:
 - suspended solids concentration
 - degree of pre-acidification

Average sludge concentration in UASB reactors: 35-40 kg VSS /m³ reactor

Online Course on Riological Wastewater Treatment: Principles: Modelling and Design Chanter on Angeroble Wastewater Treatment by Jules van Lier

Applicable organic volumetric loading rates (1)

In relation to operational temperatures for a soluble and a partially soluble waste water in granular sludge UASB reactors (hydraulic load not restrictive)

temperature	organic volumetric loading ra	ate (kg COD.m ⁻³ . day ⁻¹)
(°C)	waste water with less than 5% SS-COD	waste water with 30-40% SS-COD
15	2 - 3	1.5 - 2
20	4 - 6	2 - 3
25	6 - 10	3 - 6
30	10 - 15	6 - 9
35	15 - 20	9 - 14
40	20 - 27	14 - 18

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

hapter on Anaerobic Wastewater Treatment by Jules van Lie

Applicable organic volumetric loading rates (2)

In relation to operational temperatures for a soluble VFA and non-VFA waste water in granular sludge UASB reactors (hydraulic load not restrictive)

temperature (°C)	organic volumetric loa VFA waste water	ding rate (kg COD.m ⁻³ . day ⁻¹) non-V FA waste water
15 20 25	2 - 4 4 - 6 6 - 12 10 - 18	1.5 - 3 2 - 4 4 - 8
30 35 40	15 - 24 20 - 32	8 - 12 12 - 18 15 - 24

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier

2. REACTOR HEIGHT

The UASB reactor height is determined by the applicable maximum admissible upflow velocity, preventing sludge wash-out.

$$V_{upward}(m/h) = \frac{Q_{\inf l}(m_3/h)}{A(m_2)}$$

or:

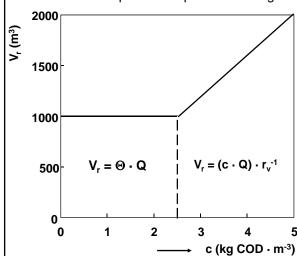
$$A_{\min} = \frac{Q_{\inf l}}{V_{upward, \max}}$$

The maximum upward velocity determines the H / A ratio, in which H = reactor height and A = surface at a given HRT (Θ) .

$$\Theta = \frac{V_{reactor}}{Q} = \frac{A_{\min} \cdot H_{\max}}{Q}$$

or

$$V_{reactor} = \Theta$$
 . Q


Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Angerobic Wastewater Treatment by Jules van I

WADENINGEN UNIVERS

UASB REACTOR DESIGN

Relationship between pollution strength and reactor volume.

Assumptions:

$$\Theta_{min} = 4 h$$

$$Q = 250 m^3 \cdot h^{-1}$$

$$r_v = 15 kg COD \cdot m^3 \cdot d^{-1}$$

hydraulic load = $6 m^3 \cdot m^{-3} \cdot d^{-1}$

(hydraulic load = 6
$$m^3 \cdot m^{-3} \cdot d^{-1}$$

$$V_{reactor} = 1000 \text{ m}^3$$
)

UASB REACTOR DESIGN Reactor volume at different loading rates and critical upflow velocities. Assumptions: 2000 V_{r} (m³) $Q = 250 \text{ m}^3 \cdot h^{-1}$ $H_r = 6 m$ 1500 $v_{crit.} =$ 1000 1.5 m⋅h⁻¹ 500 $v_{crit.} =$ 6 m·h⁻¹ 2 3 c (kg COD · m⁻³)

Maximum Applicable Biogas Loading

Cumulating biogas may limit solids retention

$$V_{biogas} = CODconc. \frac{E_{ff-meth}}{100} \cdot \frac{0.35}{F_{meth-biogas}} \cdot \frac{(T+273)}{273} \cdot V_{upw, liquid}$$

Maximum hydraulic surface loading depends on maximum allowable biogas loading (V_{biogas}) (generally 2-3 m³/m².h for UASB reactors with conventional

GLSS devices). T = temperature in °C.

Feed inlet system

The feed inlet distribution system is a crucial part of the reactor

It is important to accomplish optimal contact between sludge and waste water, i.e.

- to prevent channelling of the waste water through the sludge bed
- · to avoid the formation of dead corners in the reactor

The danger of channelling will be bigger at low gas production rates (less than 1 $\text{m}^3 \cdot \text{m}^{-3} \cdot \text{day}^{-1}$)

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van L

Guidelines for number of feed inlet points

in UASB reactors treating mainly soluble waste waters

Loading rate g COD . m ⁻³ . day ⁻¹)	Area (m²) per feed inlet point
< 1	0.5 - 1
1 - 2	1 - 2
> 2	2 - 3
<1 - 2	1 - 2
> 3	2 - 5
< 2	0.5
2 - 4	1 - 2
> 4	>2
	<pre>cy COD . m⁻³ . day⁻¹) </pre> <pre>< 1 1 - 2 > 2 </pre> <pre><1 - 2 > 3 </pre> <pre>< 2 2 - 4</pre>

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Anaerobic Wastewater Treatment by Jules van Lier

The GLSS Device (GLSS = Gas Liquid Solids Separator)

Functionality of GLSS device for UASB systems:

- separation of biogas from the liquid for discard from the reactor
- to prevent the wash out of viable bacterial matter by biogas bubbles
- to create a secondary clarifier at the top of the reactor enabling the settled sludge to slide back into the digester compartment
- to serve as a barrier for rapid excessive expansions of the sludge blanket (mainly composed of flocculant biomass sludge) into the settler
- to provide a polishing effect
- to prevent the wash out of floating granular sludge

Online Course on Biological Wastewater Treatment: Principles, Modelling and Design

Chapter on Anaerobic Wastewater Treatment by Jules van Lie

Summary guidelines design GLSS device

- The slope of the settler bottom (i.e. the inclined wall of the gas collector) is between 45-60°.
- The surface area of the apertures between the gas collectors is not less than 15-20% of the reactor surface area.
- The height of the gas collector is 1.5-2m at reactor heights of 5-6 m.
- A liquid-gas interface is maintained underneath the GLSS.
- The overlap of the baffles installed beneath the apertures is 15-20 cm (avoiding up-flowing gas bubbles entering the settler compartment)

Online Course on Biological Wastewater Treatment: Principles: Modelline and Design Chanter on Angeroble Wastewater Treatment by Jules van Lier

